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Annex D – Additional diagrams and figures 

Table I. Additional examples of state-of-the-art deep neural networks with related accuracy and hardware cost in 
GPU implementations. 

deep neural network task accuracy memory, computational effort 

ResNet [HZR2016] 
10 million images from 
1,000 categories 

3.57% top-5 error 
rate 

12GB memory requirement, 0.5-
seconds/image in best-in-class GPUs 

ResNet + Faster R-CNN 
[HZR2016] 

detect objects from 20 
different categories 

83.8% 
12-GB GPU memory and 0.5 
seconds/object detection on 256x256 
images (similar to [DLH2016], [LAE2015]) 

DeepLab-V2 [CPK2016] 

segmenting images 
containing various 
objects from 20 
categories 

79.7% 
6-GB memory cost and 2 seconds/image 
with best-in-class GPUs 

VGG16 [ZLL2016] pedestrian detection 9.6% miss rate 
6-GB memory and 0.5 
seconds/pedestrian 

multi-domain network 
[NH2016] 

tracks objects across 
video frames 

3% error rate 
6-GB memory and 1 frame/s in best-in-
class GPUs 

RCNN-based face 
detector [CHW2016], 
[WOJ2015] 

detects and align faces 98.35% 
6-GB memory and 30 images/s in best-in-
class GPUs 

GoogleNet [SKP2015], 
[WZL2016] 

face verification 99.63% 
6-GB memory, 20 images/s rate in best-
in-class GPUs 

GoogleNet [ZLL2016], 
[ZGW2016] 

facial emotion 
classification 

97.3% 
6-GB memory, 20 images/s rate in best-
in-class GPUs 
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Fig. D1. Societal impact of CogniVision: examples of applications that are enabled by (or benefit from) cognitive cameras. 
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Fig. D2. Memory size and power requirements of GPU-scale and CogniVision chip-scale vision and example (face recognition). 

 
 
 
 
 
 

 
Fig. D3. The industrial interest in embedded vision is growing rapidly, as testified by the large number of enterprises that joined 
the Embedded Vision Alliance [EVA]. 
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Fig. D4. General architectures for untethered cameras (CogniVision adopts the “cognitive&attentive” architecture to 

drastically reduce the radio-frequency transmitted power, and enables continuous responsiveness to the cloud 

requests through ultra-low power always-on receiver). 
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Fig. D5a. Power consumption of state-of-the-art imagers for mobile applications and additional wireless power 
(assuming an optimistic 5 nJ/bit - representative of best-in-class radios [ITT16]). In these plots, for fair comparison the 
power of imagers is scaled to VGA format at 30 frame/second by optimistically retaining the same energy/pixel at such 
requirements. 
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Fig. D5b. Power consumption of state-of-the-art ultra-low power imagers for always-on cameras and additional 
wireless power. As a result, the architecture #1 in Fig. 3 is unsuitable for sub-mW power budget. 
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Fig. D5c. Power consumption of state-of-the-art imagers with ultra-low power multi-mode (e.g., high-accuracy mode 
activated only if illumination changes) and additional wireless power. Again, the architecture #1 in Fig. 3 is unsuitable 
for sub-mW power budget. 
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Fig. D5d. Power consumption of state-of-the-art imagers with some limited form of sensemaking (e.g., undetected 
motion inhibits image sensing and reduces power) and additional wireless power. Again, the architecture #1 in Fig. 3 
is unsuitable for sub-mW power budget. 
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Fig. D6. The power consumption of state-of-the-art image compression accelerators (e.g., MPEG) alone exceeds the 
power target of untethered cameras. As a result, the architecture #2 in Fig. 3 is unsuitable for sub-mW power budget. 
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Fig. D7. The power consumption of state-of-the-art engines for sensemaking (e.g., deep learning, object recognition) 
alone exceeds the power target of untethered cameras. As a result, the architecture #3 in Fig. 3 based on existing 
stand-alone components is unsuitable for sub-mW power budget (i.e., system co-design is necessary to further reduce 
power). 
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Fig. D8. Integrated research prototypes: power consumption in complete and vision systems is invariably beyond 
10mW when fairly scaled at same VGA resolution and 30fps framerate. The demonstrations that are in the mW have 
very limited computation-ability (tens of MOPS, compared to the targeted 20,000MOPS), which only allows for 
shooting a picture upon the occurrence of simple events. CogniVision aims to fill this gap, allowing mW power while 
assuring suitability for a wide range of applications, as permitted by the reprogrammable deep learning accelerator 
and the adequate throughput to complete meaningful vision tasks at the targeted 30fps frame rate. 
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Fig. D9. PCB-assembled research prototypes: cameras in real conditions consume a power that is much larger than 1 
mW, and hence unsuited for energy-autonomous cameras. 
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Fig. D10. Battery lifetime of untethered cameras (PCB-assembled). Most of them were released during the review of 
the white paper of this proposal, showing a very broad interest in untethered cameras. Their lifetime is reported as per 
their datasheet or based on Amazon users’ reviews where available. Their lifetime is definitely inadequate for 
distributed sensing, and justifies the “CogniVision” research program, which aims to enable nearly-perpetual lifetime 
via energy harvesting in a small form factor (<<100mm3). 
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Table II. Leading researchers and their research work in areas affine to the “CogniVision” program (prominent 
researchers highlighted in bold). 

 institution / company leading 

researchers 

publication 

samples 

research scope and limitations 

u
lt
ra

-l
o
w

 p
o
w

e
r 

im
a

g
e

rs
 

University of 

Michigan,  

Ann Arbor (USA) 

E. Yoon 

[CPC15], 

[CPC14], 

[CPC12], 

[CHK07] 

adaptive imagers with some embedded 

low-level intelligence, but ignores the 

fundamental problem of very large 

wireless power 

HKUST (Hong-

Kong) 
A. Bermak 

[TCW13], 

[LBS11], 

[CBW11], 

[TCB10] 

sub-mW power achieved only in imagers 

with extremely poor resolution (e.g., 128 

× 96 pixels), inadequate in real 

applications 

University of 

Michigan,  

Ann Arbor (USA) 

D. Blaauw, D. 

Sylvester 

[KLF14], 

[KBF13], 

[HFB10], 

[HS09] 

ultra-low power achieved only in imagers 

with very low resolution (e.g., 128 × 128 

pixels) and frame rate (e.g., 0.5 fps), and 

very limited processing for event-

triggered picture shooting (tens of 

MOPS), both inadequate in targeted 

applications 

NTU (Singapore) 
S. Chen, K.-S. 

Low, H. Zhuang 
[ZZC12] 

ultra-low power achieved only in imagers 

with very low resolution (e.g., 64 × 64 

pixels), sensemaking heavily constrained 

by the event-driven sensing framework 

(deep learning and state-of-the-art video 

processing algorithms cannot be applied) 

Samsung Advanced 

Institute of 

Technology (Korea) 

D.-S. Park [CSK15] 

multi-mode imagers, but ignores the 

fundamental problem of very large 

wireless power 

University of Idaho 

(USA) 
S. U. Ay [A11], [A11b] 

ultra-low power achieved only in imagers 

with extremely poor resolution (e.g., 50 × 

50 pixels), ignores the fundamental 

problem of very large wireless power 

Purdue University 

(USA) 
E. Culurciello [CTZ12] 

Includes ultra-low power radio, but power 

is still 10X larger than needed; ultra-low 

power achieved only in imagers with 

extremely poor resolution (e.g., 64 × 64 

pixels), inadequate in targeted 

applications 

Johns Hopkins 

University (USA) 

R. Etienne-

Cummings 
[CMC07] 

ultra-low power achieved only in imagers 

with extremely poor resolution (e.g., 90 × 

90 pixels), sensemaking heavily 

constrained by the event-driven sensing 

framework (deep learning and state-of-

the-art video processing algorithms 

cannot be applied) 

FBK (Italy) M. Gottardi [GMJ09] 

ultra-low power achieved only in imagers 

with extremely poor resolution (e.g., 128 

× 64 pixels), sensemaking heavily 

constrained by the event-driven sensing 
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framework (deep learning and state-of-

the-art video processing algorithms 

cannot be applied) 

ARC-sr (Austria) T. Delbruck [LPD08] 

ultra-low power achieved only in imagers 

with extremely poor resolution (e.g., 128 

× 128 pixels), sensemaking heavily 

constrained by the event-driven sensing 

framework (deep learning and state-of-

the-art video processing algorithms 

cannot be applied) 

UC Louvain 

(Belgium) 
D. Bol, N. Couniot,  [BDB14] 

focused on imager, ignores the 

fundamental problem of very large 

wireless power 

NTHU (Taiwan) C.-C. Hsieh [CLY13] 

focused on imager, ignores the 

fundamental problem of very large 

wireless power 

Yonsei University 

(Korea) 
J. Lee, G. Han [CLL10] 

focused on imager, ignores the 

fundamental problem of very large 

wireless power 

Nara Institute of 

Science and 

Technology (Japan) 

M. Nunoshita, J. 

Ohta 
[KSN08] 

focused on imager, ignores the 

fundamental problem of very large 

wireless power, ultra-low power achieved 

only in imagers with extremely poor 

resolution (e.g., 128x96 pixels)  

Himax 

Technologies, Inc. 

(Taiwan) 

N/A [HM16] 

ultra-low camera power only in 

environments with virtually no motion in 

the scene, unsuitable for public spaces 

(excessive power) 

OmniVision 

Technologies, Inc. 

(USA) 

N/A [OV15] 

ultra-low camera power only in 

environments with low/steady lighting 

and no motion in the scene, unsuitable 

for public spaces (excessive power) 

Gdansk University 

of Technology 

(Poland) 

R. Piotrowski [JBJ13] 

Low-power low-resolution imagers with 

on-chip low-level analog feature 

extraction, no mid/high-level 

sensemaking, no reprogrammability 

Columbia University 

(USA) 
 

[G15], 

[NSF15] 

very large (>10 cm), no intelligence, 

ignores the fundamental problem of very 

large wireless power 
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KAIST (Korea) 
H.-J. Yoo, Lee-

Sup Kim 

[SLL17], 

[PCL16], 

[SPK16], 

[PBS15], 

[HBS15], 

[O13], [P13], 

[WSK08], 

[KLK08], 

[LKK11], 

focused on sensemaking only (no 

imager/cameras), high-accuracy at power 

consumption 100X larger than allowed in 

targeted applications 
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[LOK10], 

[HPP15], 

[PBS15], 

[KKL14], 

[HBS15], 

[PCL16], 

[LKK08], 

[OLK09], 

[OPK11], 

[OKP12] 

MIT V. Sze [CKR16] 

focused on sensemaking only (no 

imager/cameras), power consumption 

10X larger than allowed in targeted 

applications 

Toshiba (Japan) 
H. Hayashi, T. 

Miyamori 
[SPK16] 

focused on sensemaking only (no 

imager/cameras), power consumption 

100X larger than allowed in targeted 

applications 

NTU (Taiwan) L.-G. Chen [CHW15] 

focused on sensemaking only (no 

imager/cameras), power consumption 

100X larger than allowed in targeted 

applications 

ETHZ (Switzerland) L. Benini 

[RRL16], 

[LLR16], 

[PCR17] 

efficient architectures for low-power 

triggering, processing/sensemaking not 

as efficient as best-in-class accelerators 

for deep learning; hierarchical processing 

is explored 

KULeuven 

(Belgium) 
M. Verhelst 

[MV16], 

[MV17] 

general-purpose energy-efficient 

accelerators for deep learning with 

scalable precision (but no automatic 

quality control) 

STMicroelectronics 

(France) 
N/A [DCB17] 

general-purpose energy-efficient 

accelerators for deep learning with 

scalable precision (but no automatic 

quality control) 

Stanford University 
M. Horowitz, W. 

Dally 
[HLM16] 

general-purpose energy-efficient 

accelerators for deep learning for high 

performance, and energy efficiency not 

on par with best in class 

Hokkaido University M. Motomura [UAH18] 

TSV-less 3D stacked deep learning 

acceleration for high-speed, highly-

parallel systems 

INRIA O. Temam 

[DFC15], 

[CLL14], 

[CDS14], 

[LCL15] 

focused on sensemaking only (no 

imager/cameras), power consumption 

>100X larger than allowed in targeted 

applications 
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TSMC (Taiwan) 

C. Chao, F.-L. 

Hsueh 
[LMC16] 

focused on imager for mobile 

applications (large power, ignores the 

problem of very large wireless power) 

NHK Science & 

Technology 

Research Labs 

(Japan) 

T. Hayashida, H. 

Shimamoto 
[F15] 

focused on imager for mobile 

applications (large power, ignores the 

problem of very large wireless power) 

SONY (Japan) 

Y. Inada, H. 

Wakabayashi, T. 

Hirayama, N. 

Fukushima 

[S15], [S13], 

[KNH18], 

[HNH17], 

[NSM18] 

focused on imager for mobile 

applications (large power, ignores the 

problem of very large wireless power), 

and recently on 3D stacking 

Toshiba (Japan) 
R. Okamoto, S. 

Kousai 
[D13] 

focused on imager for mobile 

applications (large power, ignores the 

problem of very large wireless power) 

Shizuoka University 

(Japan) 
S. Kawahito [S12] 

resolution-scalable, but focused on 

imager for mobile applications (large 

power, ignores the problem of very large 

wireless power) 

Samsung 

Electronics (Korea) 

C.-Y. Choi, G.-S. 

Han 
[K12] 

focused on imager for mobile 

applications (very large power) 
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GeorgiaTech 

J. Romberg,  

A. 

Raychowdhury, 

S. Mukhopadhyay 

[XCR16], 

[AXC16], 

[DSR15] 

photovoltaic cell-powered always-on 

camera with gesture recognition 

capability, 4-5 cm wide + 7 cm-wide solar 

cell, 100s mW power 

Université Blaise 

Pascal (France) 
C. Bourrasset [BMS13] 

wired camera (no wireless 

communication, not energy 

autonomous), 6-7 cm wide 

Carnegie Mellon 

University 
N/A [CMU14] 

wired camera (no wireless 

communication, not energy 

autonomous), 5.5 cm wide 

ETHZ (Switzerland) L. Benini 

[KML07], 

[MTB13], 

[RRF17] 

focused on low-power trigger and hence 

on the low end of vision sensors; 

processing/sensemaking not as efficient 

as best-in-class accelerators for deep 

learning; hierarchical processing is 

explored 

KAIST (Korea) H. J. Yoo 

[BCK17], 

[MTB13], 

[BCK17] 

low-end and application specific systems 

with limited computation-ability and no 

reprogrammability (e.g., fixed face 

recognition) 

Sony (Japan) N/A [YKU17] 

3D stacked image sensor and processor 

for high-performance/high-speed 

imagine (unsuited for distributed vision) 
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University of 

Manchester (UK) 
P. Dudek 

[CBD13], 

[LD13], 

[CBD11] 

low-end and application specific systems 

with limited computation-ability and no 

reprogrammability (e.g., loiterer 

detection), or high-speed high-power 

smart imagers (unsuited for distributed 

vision) 

Fraunhofer Institute 

(Germany) 
N/A [F11] 

untethered camera with compression, 8 

cm long, very large power (4 W) 
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 2
0
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5
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Blink N/A [BLK16] 

no intelligence (only sends 10-s clips 

when motion is detected), low-power (3 

mW) only in unrealistically fixed scene, 

very large power (25 mW) in public 

spaces and other realistic conditions, 7-

cm wide 

HomeBoy N/A [HMB16] 

no intelligence (only sends 30-s clips 

when motion is detected), 2-month 

operation in unrealistically fixed scene 

(much shorter  in realistic conditions), 7-

cm wide 

Butterfleye N/A [BFL16] 

motion detector, limited intelligence to 

discard false events, sends (or records) 

up to 30ss clips when triggered, 2-week 

operation, 9-cm wide 

Google CLIPS N/A [CLP17] 

limited intelligence to trigger video 

shooting upon event occurrence, but no 

interaction with cloud, no control on the 

type of events 

Knit Health N/A [KNT17] 

limited intelligence to trigger video 

shooting upon motion detection, limited 

to recording (no interaction with cloud, 

no control on the type of events) 

Arlo (Netgear) N/A [ARL15] 

motion detector, sends (or records) up to 

30s clips when triggered (no 

intelligence), 3-6 month operation in 

unrealistically fixed scene (much shorter 

in realistic conditions), 7-cm wide 
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Table III. Recent and on-going worldwide research programs on areas related to CogniVision. 

research 

program title 

funding 

agency 

year of 

completion 

scope limitations, differences 

Reconfigurable 

Imaging 

(ReImagine) 

[REC16] 

DARPA 

(USA) 

N/A 

(2022) 

enabling software-reconfigurable 

imagers through highly-

reconfigurable pixel architectures 

with distinct imaging modes in 

different regions of interest 

focused on imager only, no 

sensemaking and vision, high-

performance imagers (large 

power, not suited for untethered 

cameras) 

Hercules (High-

Performance 

Real-time 

Architectures 

for Low-Power 

Embedded 

Systems) 

H2020 (EU) 2020 integrated framework for cutting-

edge heterogeneous multi-core 

platforms for real-time 

computation 

one of the two targeted 

applications is a visual recognition 

system for the avionic domain, 

focused on very high speed 

computation, not on complete and 

ultra-low power vision systems 

MicroLearn: 

Micropower 

Deep Learning 

Swiss 

National 

Foundation 

N/A 

(2020) 

ultra-low power accelerators for 

deep learning 

focused on deep learning 

accelerators, no integration of 

complete vision systems 

Smart Cyber-

Physical 

Systems 

H2020 (EU) 2020 H2020-ICT-2014-1 smart cyber-

physical systems (including 

vision) 

focused on low-end sensing 

platforms, no focus on general-

purpose ubiquitous deep learning 

accelerators 

Visual Cortex 

on Silicon 

[NSF13] 

National 

Science 

Foundation 

(USA) 

2018 understanding the fundamental 

comprehension mechanisms used 

in the visual cortex 

no camera demonstration, no chip 

demonstration, only sensemaking 

based on simulations and off-the-

shelf components 

Systems of 

Neuromorphic 

Adaptive Plastic 

Scalable 

Electronics 

(SyNAPSE) 

[SYN09] 

DARPA 

(USA) 

2017 new chip design mimicking brain’s 

power-saving efficiency, with 100x 

less power for complex 

processing than state-of-the-art 

chips (spurred TrueNorth 

neuromorphic chip) 

focused on large-scale compute-

intensive sensemaking 

(cloud/datacentre level), no 

camera 

COgnitive & 

Perceptive 

CAMeraS 

[COP13] 

European 

Union 

2016 ultra-low power computer 

architectures for cameras, based 

on many-core/GPU platform, 

focused on application-network-

software-architecture interface 

no imagers/cameras, no 

specialized hardware, very large 

power Watt range [COP13b], no 

chip demonstration (only FPGA 

prototyping) 

Vision-in-

Package 

[CSE15] 

Swiss 

National 

Science 

Foundation 

(Switzerlan

d) 

2015 ultra-low power imaging system 

with imager and ARM Cortex M4, 

perform face detection, facial 

landmark tracking, person 

identification 

wired camera (not energy 

autonomous, not ubiquitous), 

1.85-cm wide, assembled on 

printed circuit board, 3–4 fps 

IcyCAM 

[CSE15b] 

CSEM 

(Switzerlan

d) 

2015 single-chip miniaturized camera wired camera (not energy 

autonomous, not ubiquitous), 

imager and with general-purpose 

processor integrated on same 

silicon chip, but much larger 

power (80 mW at ¼ of VGA) 
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Supervised 

Autonomous 

Fires 

Technology 

(SAF-T) 

[SAF13] 

Office of 

Naval 

Research 

(USA) 

2015 visual processing algorithms and 

hardware/software platform for 

remote weapon stations 

(targeting, tracking and fire 

control) 

focused on algorithms, no camera 

demonstration, no chip 

demonstration, only sensemaking 

based on simulations and off-the-

shelf components 

NeoVision2 

[NEO09] 

DARPA 

(USA) 

2012 focused on neuroscience-inspired 

visual algorithms for detection, 

recognition, and tracking of many 

different classes of objects in live 

video imagery 

focused on algorithms inspired by 

the design principles employed by 

mammalian vision systems, no 

camera demonstration, no 

chip/hardware demonstration 
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Fig. D11. The three dimensions of innovation in CogniVision. 
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(d) 

Fig. D12. a) General Dyadic Digital Pulse Modulation (DDPM) operation [C17]. Interestingly, the DDPM modulation 
can be effectively used to perform products, weighted sums (and hence convolutions for deep learning) with very low 
hardware cost, which consists of simple pulse counters (see on the right side of the figure). b) CogniVision leverages 
this fundamental and new observation to simplify each neuron into a counter, replacing the conventional energy-
hungry method to compute convolution through multiply and accumulate.  
c) Example of numerical simulation showing that the computational complexity and the relative accuracy are 
independent of the number of weighted products (i.e., complexity of the network), thanks to the DDPM approach. In 
this example, the results of 128 sets of N=256-terms weighted sums and N=1024-terms weighted sums are computed 
according to the proposed DDPM technique, and are compared with the results of the conventional computation, 
showing an error which is almost always less than 2% in both cases, independently of the number of weights. The 
targeted error can be easily reduced (1 additional bit of accuracy for doubled W) by increasing W, at the expectable 
cost of increased computation time. 
d) Resulting DDPM architecture of deep learning accelerators (see preliminary results in relevant section with 
50TOPS/W expected energy efficiency in 28nm CMOS technology). 
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non-uniform precision allows 
5X lower complexity

non-uniform precision allows 
10X lower complexity

 

(a) 

 

 

(b) 

Fig. D13. a) Example with CIFAR10-trained neural network based on conventional uniform (U) and proposed non-
uniform (NU) precision across neurons in convolutional layer #3 (results in other layers are equivalent or better). For a 
given accuracy over CIFAR-10 benchmark, non-uniform precision allows 5-10X reduction in complexity (i.e., overall 
number of computed bits, and hence gate count) compared to conventional uniform. 

b) The penalty of non-uniform precision training is a 10X increase in the offline training time. This increase in offline 
training time is amortize across all devices performing inference. The increased offline training time can be dealt with 
by using commercially available cloud services (e.g., Amazon), which permit to temporarily scale up the server speed 
for training at larger cost. In other words, non-uniform precision allows a tradeoff between cost at training time (usually 
very small, in view of the large number of devices sharing the same network) and the complexity and power at 
inference time. 
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(a) 

 
 
 

PROPOSED 2-PHASE NETWORK POWER-AWARE COMPRESSION APPROACH

Phase I: hard thresholding over connections and sub-network fine-tuning.

Apply hard thresholding over gradients magnitude calculated at each neuron to select the most informative ones (with large 

gradient magnitude). The hard thresholding preserves the top k neurons with the largest magnitude and disables the others by 

zeroing their parameters. Then, fine-tune the alive neurons to compensate the performance loss caused by the reduction in the 

number of filters. The loss function is calculated in a way specific to the application, and also combines both the accuracy and the 

power to achieve a desired balance between energy and quality (power-aware). 

Phase II: neuron re-activation

The disabled neurons are re-activated and all the parameters are learned by training the entire network. The goal of this phase 

is to restore the truncated neurons and re-train the network to escape from some incorrectly compressed network models.

The above two phases are performed iteratively until there is no change over the neuron selection.

The final operation is the one in phase I to produce a compressed network. The proposal of such a gradient-based compression 

approach is based on the general intuition that the gradient magnitude passing through each neuron could reflect the 

“informativeness” of each neuron during the optimization process [Z16].

(b) 
 
Fig. D14. a) Model pruning to remove redundant parameters and reduce the size of a deep learning model. In this 
example, both the connections between different layers of the model and redundant parameters (the neurons) are 
pruned based on the iterative hard thresholding method. As a result, more than 50% of the parameters (shown as the 
connections) are pruned. 
b) Details on the proposed two-phase power-aware compression approach. 
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Fig. D15. Use of small deep neural networks to automatically identify salient regions. In this example, the machine 
learning circuit automatically focuses its attention on the person in the image (highlighted in red), discarding other 
irrelevant regions to avoid unnecessary computation (again, a form of irrelevant computation skipping). 
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Fig. D16. Novel on-chip SRAM memory bitcell with unconventional non-precharged bitline for 70-80% reduced bitline 
activity (and 40% reduced power) to store features, pixels and weights. As opposed to existing 6T and 8T bitcells, the 
proposed bitcell is able to drive the read bitline to ground and to the supply voltage, thus avoiding the need for 
precharge and the resulting high bitline activity encountered in conventional pre-charged SRAMs. 
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Fig. D17. In CogniVision, irrelevant activity is stopped at the lowest possible level of semantic understanding. The 
sooner it is stopped, the lower its power cost as higher levels of semantic understanding are associated with larger 
power. Every task has low activation rate (i.e., it is executed on a small fraction of the frame), reducing effective power 
by the same factor. The numerical example on the right refers to human detection in an indoor environment (maximum 
up to 20 humans in the field of view, 500-1,000lux light level), and uses preliminary deep learning logic-level 
simulations and detailed power calculations/estimates reported in Table IV. 
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Fig. D18. In CogniVision, each sub-system in Fig. D14 (e.g., imager, feature extractor…) generates a small relevance 
table (e.g., few kb at most), where the frame portions/tiles where relevant activity is taking place. The output of the 
relevance table is taken up by the next sub-system (e.g., feature extractor after imager) to skip computation that 
pertains to irrelevant regions (i.e., where the bits in the relevance table are tagged as irrelevant, which are left blank in 
this figure). 
This mechanism involves all sub-systems to avoid the waste of power observed in conventional vision systems on a 
chip that re-compute the entire frame every time a single event occurs (e.g., appreciable motion in a pixel). 
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(b) 

Fig. D19. a) Circuit principle of the proposed in-sensor saliency detector: if the overall 5x5 pixel tile current changes 

significantly, it means that the intensity in the tile has changed appreciably, hence the tile is salient. In this case, the 

imager relevance table in Fig. D18 is updated, flagging the corresponding tile as relevant (i.e., salient). All individual 

pixels in the tile are read-out normally. 

If the overall 5x5 pixel tile current is similar to its long-term average, no appreciable change is detected and the tile is 

non-salient. In this case, pixels do not need to be read out, thus reducing number of read-outs and imager power by 

25X. 

b) Numerical analysis of in-sensor saliency detector through benchmark in []. The precision vs recall plot for various 

values of the threshold e in Fig. D19a shows that lower thresholds improve Recall (higher), at the cost of worse 

precision (lower). To avoid skipping potentially salient regions, Recall is more important than Precision and hence 

needs to be favored.  

The point highlight in red (e=0.02) is an example of reasonable tradeoff, where Recall is quite high (92%), and 

Precision is fairly low (33%), but still reasonable in terms of impact on power. Indeed, the resulting increase in false 

positives (i.e., activity of feature extractor) has minor impact on the overall power saving, since only 2-3% of tiles turn 

out to be salient anyway (i.e., activity and power are drastically reduced in spite of the presence of false positive 
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Fig. D20. Architecture of always-on receiver at the ISM band of 2.4GHz. 

The receiver power in the always-on part is estimated to be 300-350mW from preliminary simulations in 180nm CMOS. 
The receiver and the transmitter are expected to consume 2mW when ON, but their infrequent activation reduces their 
average power by two orders of magnitude (i.e., few uWs), under realistic activation rates in the order of 0.01% (i.e., 
communication between cloud and camera occurs every 10,000 frames, or equivalently every 33 seconds - or longer - 
at 30frames/s). 
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Fig. D21. In-principle architecture of CogniVision. The System on Chip communicates with the external world 

through a radio transceiver, which is connected to the low-performance microprocessor managing the chip 

settings via a) a programming interface that provides the settings (including the weights for deep learning) as per 

the cloud’s requests, b) an output interface for wireless transmission (e.g., ZigBee). 
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Fig. D22. Gantt chart: project launch, integration, exploration & 

demonstration, energy-centric techniques  

(Mx.y = milestone y in sub-project x; Dx.y = deliverable y in sub-project x) 
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Table IV. Detailed targets for the final demonstration and measure of the success of the project in three visual tasks 

(ImageNet classification, human detection and object detection). Detailed operating conditions, dataset, neural 

network targets and chip performance targets are provided for each of them. 

 

task 1) ImageNet image 

classification 

(0.5MobileNet network 

[MBN17]) 

2) human detection* 

(detect and localize the 

presence of persons within 

a frame) 

3) object detection* 

(detect and localize 

objects of a specific 

category in a frame) 

testing dataset public Imagenet database 

[ILSVRC] 

live scenes captured in EA 

lobby @ NUS (additional 

scenes from public space 

in Singapore, subject to 

approval) 

live scenes captured in EA 

lobby @ NUS (additional 

scenes from public space 

in Singapore, subject to 

approval) 

operating 

condition** 

500-1,000lux light level, 

wall-projected ImageNet 

samples 

500-1,000lux light level, 

up to 20 humans in the 

field of view 

500-1,000lux light level,  

up to 10 objects in the field 

of view 

adopted network standard MobileNet 

[MBN17] 

structure similar to 

AlexNet (5CONV+3FC), 

retrained for human 

detection via innovative 

compression techniques 

structure similar to 

AlexNet (5CONV+3FC), 

retrained for object 

detection via innovative 

compression techniques 

accuracy target 60%  

(reference: 57.2% in 

AlexNet) 

detect 85% of 300 persons 

in a single frame 

80% over 10 categories 

(person, car, chair, dog, 

bicycle, bird, bus, 

table,motorbike,monitor) 

throughput target 30fps, projected images 

with 256x256 resolution 

(ImageNet benchmark) 

30fps 

VGA resolution 

30fps 

VGA resolution 

model size (weight 

memory)*** 

1.3E6 

(1.3 MB after innovative 

network compression and 

weight binarization) 

6E6 

(0.75 MB after innovative 

network compression and 

weight binarization) 

6E6 

(0.75 MB after innovative 

network compression and 

weight binarization) 

# 

operations/frame**

** 

76E6 114E6 114E6 

targeted 

throughput @ 

30fps (ops/frame * 

framerate) 

2,280MOPS 3,420MOPS 3,420MOPS 

targeted 

CogniVision 

power***** 

1mW (dominant 

contribution: 0.56mW 

deep learning accelerator) 

1.2mW (dominant 

contribution: 0.8mW deep 

learning accelerator) 

1.2mW (dominant 

contribution: 0.8mW deep 

learning accelerator) 
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* Detection is here performed on a frame basis (no tracking). Occlusion is not dealt with in these demonstrations, as 

no elegant solution has been found in the preliminary exploration we have performed in this area (due to the 

complexity of the task). If strictly needed, occlusion can be addressed in the cloud by occasionally having the cognitive 

camera send all the keypoints for frames where there is activity, and have the cloud deal with occlusion. Another 

possible approach is to generate a deep network that is able to perform this task within the capabilities of the 

CogniVision system on chip (i.e., MB-range weight memory, 20,000MOPS computational throughput). 

** Range of conditions that have been used in deep learning simulations to estimate the achievable accuracy in 

preliminary exploration (Caffe framework [BKL]), same as target conditions at CogniVision deployment 

*** Weight memory evaluated after training and compressing the AlexNet network for the accuracy target in the table 

(see proposal for the details of the techniques introduced to reduce the model size) 

**** Number of operations (additions, multiplications, comparisons) per frame evaluated from the actual structure of 

the compressed network in the table, then scaled to VGA by realistically assuming a complexity increase (i.e., 

neurons, number of computations) by 12X compared to AlexNet at its 256x256 resolution (12X was evaluated by 

retraining the network with the same structure for VGA resolution). 

***** Power of deep learning accelerator is obtained as TOPS/(TOPS/W) where TOPS=1,000,000 MOPS is indicated 

in the table, and the energy efficiency TOPS/W = 50 from logic simulations of the DDPM accelerator in 28nm CMOS. 

Dominant wireless power is dictated by the receiver, and is 350mW from the preliminary results discussed in the text. 
 

Estimates in this table are generated under the following assumptions: 

- the popular FOM of the imager is 10pJ/pixel (in line with reasonably good imagers with similar pixel size of 5mm and 

technology, although not best-in-class as this FOM is not critical to the overall power as shown in the example in Fig. 

D17) 

- the energy/pixel of the feature extractor is estimated to be 22pJ/pixel in in 28nm CMOS (i.e., only 2X lower than 

recent silicon demonstration from our team [APA17], which is pessimistic compared to the preliminary simulation 

results obtained with the new feature extractor architecture that will be explored in the project). Such pessimistic 

assumption will not impact the overall power estimate significantly, as the dominant contributions come from the deep 

learning accelerator and the radio transceiver 

- the energy/frame in novelty assessment is equal to the energy in the feature extractor (estimated to be comparable 

from high-level simulations) 

- the deep learning accelerator has an energy efficiency of 50TOPS/W, as found from post-synthesis logic simulations 

of a preliminary Verilog description of a small-scale DDPM accelerator (16x8 neurons) in 28nm CMOS 

- memory energy per access is 30fJ/bit, in line with circuit simulations of an SRAM in 28nm CMOS 

- transmitted wireless power is assumed to be 2mW (reduced to 2mW by the realistic activation rate of 0.01%, which 

corresponds to one transmission every 10,000 frames, or equivalently 33s) 

- pixel activation probability in pre-saliency assessment is 5% (pessimistic, as it can be as low as 3.5% depending on 

the specific video, using the benchmark in [CDT12]) 

- novelty assessment identifies 20% features as novel on average (pessimistic, this has been observed to be down to 

5% through the benchmark in [CDT12]) 

- no energy saving from irrelevant activity skipping is pessimistically being considered in the deep learning accelerator, 

as this seems to be dependent on the network from a preliminary analysis. Deeper analysis will be carried out during 

the execution of the project. 

The above assumptions immediately lead to the numerical results in Fig. D17, by simply multiplying each power 

contribution by the corresponding activation rate (see above assumptions). 
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Table V. Industrial collaborations of team members and adoption of their research work in areas 
that are relevant to the CogniVision project 

team member companies (Singapore) research topic notes 

Prof. Massimo ALIOTO 

Intel 
ultra-low power digital 
signal processing 

research collaboration 

Mediatek 
energy-quality scalable 
circuits 

Intellectual Property sharing, full 
fabrication support 

TSMC (Taiwan) 
ultra-low power circuits 
for IoT 

Intellectual Property sharing, full 
fabrication support 

Huawei, NeuroMem 
Technologies and several 
others 

ultra-low power 
frontends for vision 

possible licensing of previously developed 
vision technologies (under discussion) 

Prof. FENG Jiashi 

Huawei, Qihoo 360, 
Adobe, Snap on 

deep learning and 
computer vision (vehicle 
detection, scene parsing, 
human pose estimation, 
…) 

research collaboration 

Panasonic R&D 
face 
verification/detection 

adopted in Panasonic Face Pro system 
(most accurate face recognition in NIST 
IJB-A benchmark) and will be used in the 
surveillance system managed by the 
Singapore Ministry of Home Affairs 

Prof. YEO Kiat Seng 

GlobalFoundries, 
Samsung 

RF device 
characterization and 
modeling 

inductor design for RF, transformers, 
varactors, VCOs, RF transistors 

MediaTek, Panasonic, 
LTA, A*STAR, 
Broadcom, Infineon 

RF transceiver 
architectures and power 
amplifiers 

· has demonstrated the world’s smallest 
on-chip low-pass filter (US Patent) with 
the broadest stop-band up to 52 times 
the cut-off frequency, i.e., 110GHz 
· 36G/24G front-end transceiver 
architectures with carrier suppression and 
ultra-low unwanted emissions, power 
amplifier and linearization techniques 
using active and passive devices 

Prof. Luca Benini 

Greenwaves 
Technologies 

parallel-ultra-low power 
digital processor for 
computer vision, deep-
learning accelerator 

commercially licensed 

Google, Micron, 
STMicroelectronics, 
Mentor Graphics, 
Cadence 

PULP open source 
platform for near-sensor 
analytics 

publicly acknowledged adoption 

Prof. CHEN Shoushun 

Samsung 

High Dynamic Range 
CMOS Image Sensor 
System with Adaptive 
Integration Time and 
Multiple Readout 
Channels“ (US Patent) 

 
commercialization in progress: signed 
NDA and disclosed patent details 
 

HILLHOUSE 
TECHNOLOGY PTE LTD, 
(Singapore-based startup 
company) 
 

A High Speed Motion 
Detection Image Sensor" 
(US patent US 9,628,738 
B2 granted in July 2017) 

twelve-year exclusive licensing 

Prof. Dennis SYLVESTER 

founded two startups: 1) 
Ambiq Micro in 2010 
based in Austin, TX 
2) CubeWorks in 2013 
based in Ann Arbor, MI 
 

1) ultra-low power 
components for 
wearables and IoT  
2) Michigan Micro Mote 
(M3) platform (one M3 
design includes imaging 

1) raised $90M to date, lead is Kleiner 
Perkins (VC that led Google funding) 
2) Intel Capital is lead funder 
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based on infrequent 
triggering) 

 


