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Rebuttal letter (1 page) 
REVIEWER: The proposal develops capabilities at the interfaces between energy and 
performance, algorithms and hardware, and has potential for wide impact on the design of future 
smart systems. The Full Proposal should address the following: 
•         Elaborate on the deployment architecture and the desired energy efficiency of the novel 
circuits for on-chip deep learning; 
 

We thank the Reviewer for the suggestion. In this full proposal, the proposed architecture for on-
chip deep learning has been detailed, and its energy efficiency target has been clearly specified 
(50TOPS/W or better, i.e. 10X better than prior art with accuracy targets in line with real 
applications). Quantitative goals have been defined for individual blocks, as well as overall 
power/accuracy/memory/throughput goals have been defined in three well-defined use cases. 
 
REVIEWER: Augment the team with more established expertise on deep learning and system 
architecture. 
 

As suggested by the Reviewer, Prof. Luca Benini (ETHZ) has been added as collaborator. Prof. 
Benini is well known to be one of the maximum experts in architectures for deep learning in the 
world. 
 
REVIEWER: Provide details of how the 4.5GHz data link would be designed and set up because 
it is a non-standard data link. The cameras would need to be talking to a customised kerbside radio 
access point (are any limitations to how far it can be away to talk to many such cameras in its 
vicinity?) which will probably not be ultra-low power; 
 

We thank the Reviewer for catching this typo, the targeted carrier frequency has been corrected 
to 2.4GHz, which is widely used for wireless communications and networks, being an unlicensed 
band utilized by many existing standards. As correctly pointed out by the Reviewer, the radio 
transceiver developed in this project is fully compatible with most common IEEE standards in the 
2.4GHz band (i.e., 802.11x including WiFi, Bluetooth, etc.) 

The kerbside radio is assumed to be a conventional router that serves as a gateway. To limit the 
power of the transmitter in the cameras to mWs, a distance of few tens of meters (e.g., 20) is 
assumed. As correctly pointed out by the Reviewer, conventional wireless camera that transmits 
entire frames would not be low ultra-power. However, cognitive cameras perform on-chip 
computation and hence transmit only aggregate data (i.e., short packets) upon the occurrence of 
events (i.e., infrequently), thus determining a very low activation rate for the transmitter (0.001 or 

lower). In turn, this translates into an average transmitter power of Ws or less, which indeed 
justifies the cognitive camera approach. 

 
REVIEWER: Clarify whether the System-on-Chip (SoC) work could be scaled to work at HD 
resolution at 30 fps processing rate. 
 

HD resolution would entail a throughput increase by 3X within the same power budget. In 
principle, this objective might be feasible along the execution of the project. This will become clear 
once the proposed techniques and the underlying tradeoffs are well understood and proven on 
silicon. However, committing to such goal seems risky at this juncture, and pursuing VGA resolution 
at the same 30fps rate is a goal that our team is comfortable with. 

 
NOTE ON THE BUDGET: in this full proposal submission, the direct cost of the project has been 
increased from S$5,66M to S$6.36M, compared to the original white paper. This is explained by 
the previous adoption of outdated salary tables, and the previously incorrect exclusion of the 
customary annual salary increases that adjust the EOM salary to inflation every year. 
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Research Proposal (20 pages) 

Research Objectives 

MOTIVATION AND THE GRAND-CHALLENGE 

The grand goal of “CogniVision” is to enable the unprecedented capability of performing 
ubiquitous real-time vision through novel silicon chips that are untethered, always-on and nearly-

perpetual, ultra-miniaturized (<100 mm3), inexpensive (1$). From a broad viewpoint, CogniVision 
introduces a new class of cameras that are “cognitive” and “attentive”. CogniVision cameras are 
cognitive as they are able to constantly make sense of the scene through extremely energy-
efficient circuits for best-in-class machine learning algorithms, i.e. deep learning based on 
convolutional networks [GBC16]. In the last few years, deep learning and convolutional networks 
have been extensively demonstrated to achieve outstanding accuracy, and to exhibit an 
uncommon degree of flexibility as they can be restructured (e.g., adjusting number of layers and 
weight values) to perform a very wide range of vision tasks. Indeed, deep learning has become 
the de facto standard framework for image and video processing, with remarkable success in 
content understanding [KSH2012], face detection [CHW2016], [WOJ2015], [SKP2015], 
[WZL2016], object detection [HZR2016] and tracking [NH2016], image classification [HZR2016] 
and segmentation [CPK2016], pedestrian detection [ZLL2016], loiterer detection [LNA16], 
abandoned luggage detection [SI18] (see examples in Table I in Annex D). Deep learning is an 
ideal framework for silicon accelerators due to easy upgradeability, and generality of its framework. 

A given neural network is able to perform either a specific or a range of tasks (e.g., multi-task 
networks) [C93], [GBC16], [R17], but it cannot cover the entire range of all possible applications of 
distributed vision. To achieve broad coverage, the straightforward solution of storing a wide variety 
of networks on the same cognitive camera chip is not feasible, given the large amount of memory 
generally required for each network (e.g., 6-12 GBs in Table I), and the limited memory available 
on chip (various MBs, currently). Also, this approach would prohibit important capabilities such as 

1) respond to time-varying requirements of the “cloud” server gathering the output of many 
cameras (e.g., request to perform a new task or occasionally send entire frames, as triggered by 
events captured by neighboring cameras, based on global understanding of the cloud) 

2) upgrade the neural network, using its innate ability to be refined via retraining with new data 
3) save power when degraded quality in processing (e.g., approximations) is tolerable for less 

visually demanding tasks (e.g., optical character recognition simpler than object detection). 
A suitable approach to achieve these capabilities is to allow the cloud to push neural network 
configurations onto individual cameras, which in turn need to be responsive and receptive of the 
related commands from the cloud. Accordingly, cognitive cameras also need to be attentive, i.e. 
listen to commands wirelessly sent by the cloud, hence requiring an always-on radio receiver. 

In general, nearly-perpetual always-on operation is pursued by harvesting power from the 

environment, which limits the power consumption of CogniVision cameras to 1 milliwatt to 
maintain the system volume well below 100mm3 (e.g., provided by a 0.1-mm thick, 5-cent, 1-2 cm 
wide organic photovoltaic foil attached to a wall [INF], with a stacked 0.4-mm equally sized battery 
[BTV] and on-foil printed antenna [GSI], all commercially available). Reducing the power 
consumption of cognitive cameras down to the 1mW range is the fundamental objective of 
this project. This entails a power reduction by at least 20-30X compared to the most power-efficient 
existing cameras that constantly monitor the scene with resolution and frame rate that are adequate 
for distributed monitoring and surveillance [PSC] (e.g., VGA resolution, 30 frames/s). 

Cognitive cameras with power down to 1mW will be enabled by drastically limiting the amount of 
data transmitted wirelessly to the server cloud that makes sense of the scene, thus substantially 
reducing the traditionally large power due to the transmission of entire video frames (e.g., 40-50 
mW with MPEG-compressed VGA frame, Bluetooth Low Energy transmission [G15b]). This is 
accomplished by embedding substantial sensemaking capability (e.g., object detection) into the 
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camera silicon chip, leveraging the recent impetuous advances in deep learning and convolutional 
neural networks [HZR2016], [DLH2016], [LAE2015], [ZLL2016] (widely adopted by Google, 
Facebook, Microsoft). As paradigm shift, CogniVision moves sensemaking from the cloud to 
cognitive cameras, keeping the power in the mW range in spite of the traditionally high 
computational complexity of deep learning. This will be achieved via innovation on energy-efficient 
circuits/architectures for sensemaking (see “Approach” section), including a novel digital energy-
quality scalable architecture for general-purpose on-chip acceleration of convolutional networks 
with energy efficiency of 50TOPS/W or better, i.e. 10-20X more energy-efficient than the state of 
the art. Its ability to execute any convolutional network makes it applicable to the very wide (and 
ever-expanding) range of applications of convolutional networks, as long as the network fits the 
on-chip available memory and processing array size, as discussed in the “Subprojects” section. 

Being “attentive”, CogniVision cameras have also the capability to be responsive to the cloud, 
and occasionally be reprogrammed by the cloud in the following ways: 1) transmit a short 
series of frames to be processed directly by the cloud (e.g., if the visual task exceeds the cognitive 
capabilities of the camera); 2) update the neural network to a different one (i.e., uploading layer 
structure and weights), when the cloud requests a substantial change in the visual task executed 
by the camera (e.g., the cloud needs to identify very specific objects in a given area being covered 
by some of the cameras); 3) statically adjust on-chip energy-quality knobs that can save energy 
in vision tasks where lower processing accuracy or arithmetic precision are tolerable (e.g., less 
demanding visual tasks such as optical character recognition, as compared to more challenging 
tasks such as object detection – see details in the “Innovation and unifying framework” section).  

As side benefit, cognitive cameras solve the traditional issue of data deluge in distributed 
vision systems. Indeed, frames from cameras are traditionally transmitted wirelessly to the cloud, 

involving large data volumes (20 cameras exhaust the capacity of a wireless LAN, Internet video 
traffic is increasing alarmingly fast [CIS15]). This is avoided in cognitive cameras, as the transmitted 
data volume is reduced by several orders of magnitude (from preliminary simulations, they transmit 

at a data rate of 1-10kbps on average, as opposed to several MBs in traditional cameras). 
Regarding the timeliness of the CogniVision project, embedding vision in energy-autonomous 

nodes has been pursued for a decade [AMC06] with very limited success, due to the excessive 
power consumption required by on-chip processing. We are now witnessing the convergence of 
three technology trends, which are reshaping the areas of machine learning for computer vision 
and ultra-low power chips. On one hand, deep convolutional neural networks have made 
tremendous advances in terms of vision capability, although at substantial power and memory cost 
that is beyond the capabilities of energy-autonomous systems [ZLL2016], [ZGW2016], [SKP2015], 
[LAE2015], [KSH2012]. Their power power is now reaching the tens of mW range after two very 
intense years of research in deep learning accelerators [DL18]. Simultaneously, fundamental 
advances have been recently made in the area of energy-quality scalable integrated circuits and 
systems (including deep learning accelerators and vision processors), where substantial reduction 
in the intensity of computation and energy is achieved when moderate reduction in the quality of 
processing/sensing (e.g., arithmetic precision) is tolerable by the vision task at hand [A17b], [A16], 
[D15b], [FKB14] (see upcoming IEEE JETCAS journal special issue led by the PI [A18], and his 
recent book [A17]). Also, fundamental advances have been recently made in image sensor design, 
introducing the ability to embed simple in-sensor processing with low energy cost, limiting the 
expensive centralized processing requiring full frame readout [BLK16], [HMB16], [BFL16], 
[CPC15], [CSK15]. As convergence of the above trends, CogniVision leverages the well-known 
exceptional robustness of deep learning/vision against inaccuracies to exploit energy-
quality scaling and simple in-sensor processing, which justify the timeliness of the project. 

Recent market trends confirm the timeliness of CogniVision, and the expectable importance 
that smart untethered cameras will have in the years to come. For example, in December 2017 
Amazon has acquired the wireless camera company Blink [F17]; in October 2017 Google has 
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released the CLIPS wireless camera [SL17]. Although the capabilities of such cameras are 
currently limited (e.g., actual lifetime from 3-5 hours with continuous shooting [GC17], [BLKa] to 2-
5 weeks [BLKb], they simply record clips when event occur), this clearly shows a technological and 
market interest in ubiquitous vision. In 2017 Qualcomm announced the intention to pursue a 
research project on low-resolution (320x240) cameras for smart toys/appliances [QCM17] with low 
recognition capabilities (e.g., single object detection, ambient light sensing). None of the available 
cameras can interact with the cloud in real time (i.e., they are not “attentive”). As another example, 
in March 2018 Sony and other companies formed the NICE alliance to support the creation of a 
prospective generation of cameras with on-board analytics [NIC18], [NICE18b]. 

Ubiquitous cognitive cameras can provide novel technological capabilities and societal 
benefits, enabling for the first time situational awareness with fine spatial granularity across wide 
areas (from building to city scale). Fig. D1 in Annex D show examples of targeted applications, 
such as ubiquitous/augmented surveillance, vehicle/pedestrian detection, intelligent transportation, 
crowd monitoring, industrial plant monitoring, warehouse management, detection of dangerous 
objects, disaster management, among the others. In short, CogniVision empowers the Internet 
of Things (IoT) (i.e., ubiquitous sensor augmentation of the Internet [A17], [IOT14]) with the sense 
of vision, for the first time. As IoT is the next “big wave” of technology (45% annual growth, global 
value of 11T$ by 2025 [MCK15]), CogniVision will leverage its capabilities and potential growth to 
create economic value in Singapore, accelerating the Smart Nation vision [SN]. 

TECHNICAL CHALLENGES AND REQUIRED INNOVATION  

The goal of CogniVision is pursued by embedding real-time scene sensemaking (“cognitive”) and 
always-on radio receiver (“attentive”) in a mW-power budget, addressing the following challenges. 

A. Enabling sub-mW deep learning accelerators and power-aware neural networks 
Deep learning hardware acceleration is well known to be compute-intensive. For example, the 

popular AlexNet network requires 122MB of memory, 1.14E9 multiplications/additions per frame, 
and the DRAM memory alone consumes a power of 12.8W at 20 frames/s, which is well beyond 
the power budget of mobile and IoT devices [HMD16]. In the last two years, the chip design 
community has aggressively pushed towards the conception of deep learning accelerators with 
power down to tens of mW under popular benchmarks such as AlexNet [DL18], , [UAH18], [ 
[BWL17], [BCK17], [MV17], [WLL17], [SLL17], [DCB17], [YOT17], [AUO17], [PCR17], [MV16], 
[CKR16], [SPK16], [CKR16]. To aggressively reduce the power below 1mW while maintaining a 

throughput that accommodates for most typical vision tasks (target is 10X the throughput required 
for AlexNet at 30fps and VGA resolution, i.e., 20 GOPS – 20 billions of operations/s), an inter-
disciplinary approach cutting across neural network algorithms, digital architectures and circuits is 
needed. Innovative digital architectures beyond current implementations of convolutions through 
adders and multipliers are needed, to undercut the power cost of such power-dominant operators. 
Innovative neural network compression/training methods to reduce the model size down to MBs 
are needed to fit weights on chip, avoiding the large power of off-chip memories [HMD16], [HZC17]. 
Power/architecture-aware neural networks and training methods are needed to incorporate power 
into the network training loop, instead of conventionally focusing on mere accuracy. New 
opportunities to save power are available by focusing computation on “informative” frame regions. 

B. Introducing innovative ultra-low power techniques to suppress irrelevant activity 
The scene typically exhibits substantial redundancy in the temporal and spatial dimension. Our 

analysis of a large video dataset [CDN] has shown that only 3-5% of the frame changes between 
subsequent frames, and only 5% of such small fraction is truly novel (i.e., a new object is coming 
in) and hence deserves to be processed. Hence, a fundamental challenge is to truly exploit such 
temporal and spatial sparsity of relevant and fresh information in each frame, suppressing 
irrelevant activity in most regions of the frame where no new event/object is taking place. Instead, 
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today’s low-power imagers and commercial cameras suppress computation only in the infrequent 
case where no pixel has changed in the frame [CPC14], [CSK15], [BLK16], [HMB16], [BFL16].  

To address this challenge, innovative techniques are needed to empower all vision sub-systems 
with the new capability to perform low-level, inexpensive and fine-grain (e.g., small pixel tiles) 
assessment of the relevance of the frame content, before other more energy-hungry activity is 
performed at higher levels of semantic understanding. For example, motion or saliency should be 
assessed before feature extraction or classification, since the former can be performed locally and 
at much lower power. Similarly, innovation is needed in radiofrequency circuits for ultra-low power 
always-on wireless communications, to assure that the radio receiver is always listening to the 

cloud, while consuming only a few hundred Ws to fit the mW power budget. 

C. Enabling innovative energy-quality scalable architectures for ultra-low power vision 

As a further dimension that can be leveraged to reduce power, vision and machine learning 
algorithms are well known to be robust against computation quality degradation [A17], [A17c], 
[CMR10], (e.g., arithmetic precision, early termination of iterative algorithms). This translates into 
the (currently unexploited) opportunity to degrade quality and hence reduce energy in all levels of 
semantic understanding, when the visual task being executed allows it [MV17]. The concept of 
energy-quality scaling is general and is currently being explored [A18]. For example, several deep 
learning accelerators and neural networks with scalable arithmetic precision were proposed in the 
last two years [DL18]. Precision is statically optimized for a given machine learning task to minimize 
power, while meeting the classification accuracy requirement for the visual task at hand. Having 
clearly exhausted its potential [DL18], as uniform precision scaling (i.e., same precision for all 
neurons in the same network layer) needs to be superseded by more general approximations. Also, 
to allow aggressive power reductions, energy-quality scaling needs to be extended to all stages in 
the sensing-sensemaking chain, from the image sensor to the feature extractor, up to the machine 
learning engine. The challenge is in devising novel algorithm, architectural and circuit methods to 
insert energy-quality knobs that substantially reduce power, while slightly degrading quality and 
introducing minimal circuit overhead. As an example of the potential benefit of energy-quality 
scaling, at the end of 2017 the PI’s research group demonstrated the first energy-quality chip 
for feature extraction with 20X lower power compared to the state of the art [APA17]. 

EXPECTED OUTCOMES AND SIGNIFICANCE 

CogniVision introduces a paradigm shift enabling for the first time distributed and ubiquitous 

vision. In terms of technological impact, it empowers cameras with the following capabilities: 

- UNTETHERED: CogniVision cameras are untethered in view of their ultra-low power operation, 

with mW power budget within the means of commercial energy harvesters 

- UBIQUITOUS: CogniVision cameras can be deployed ubiquitously and unobtrusively thanks to 

their small size, as enabled by their single-chip integration and mW-power operation, which 

keeps the energy harvester and storage small (e.g., 0.1-mm thick, 1-2 cm wide photovoltaic foil 

[INF], with a stacked 0.4-mm equally sized battery [BTV]) 

- ALWAYS-ON: their ultra-low power consumption and suitability for harvesting enables energy 

autonomy and continuous operation for uninterrupted visual monitoring 

- LOW COST: CogniVision cameras leverage the low cost of mass-produced standard CMOS 

chips and commercial harvesters, with a cost at volume in the dollar range 

- ON-CHIP ANALYTICS: thanks to its processing energy efficiency (target: 50 TOPS/W), 

CogniVision brings deep learning from the cloud into cameras, enabling local data analytics 

- DATA DELOUGE AVOIDANCE: CogniVision cameras perform significant computation on chip 

and transmit only aggregate information, reducing the wireless bandwidth by several orders of 
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magnitude (10,000X). This eliminates the traditional issue of heavy network utilization of 

wireless cameras, and enables integration in existing wireless networks (no upgrade needed). 

- MITIGATION OF PRIVACY ISSUES: privacy issues are mitigated since aggregate information 

is mostly transmitted to the cloud, transcending individuals. 

In terms of societal benefits, the distributed/ubiquitous vision capability of CogniVision enables 
for the first time the ability to achieve continuous and pervasive situational awareness, and at very 
different scales (e.g., from building, to district and city scale). This capability has potentially very 
strong implications in terms of improved security, safety, infrastructure planning and dynamic 
optimization, shared services and urban resource allocation, location mapping of objects and 
subjects, crowd behavioral monitoring, context-enriched social media and augmented reality, 
disaster management, real-time visual search, among the many others. Our society can indeed 
greatly benefit from such non-intrusive technologies that can recognize and locate objects, 
situations and contexts of interest, and signal if greater attention or human intervention is needed.  

From an economic impact point of view, CogniVision bridges image sensors and integrated 
accelerators for vision, and hence can make an economic impact in both markets, and open new 
market opportunities in the broad area of the IoT. The market size of traditional imagers is rapidly 
growing at CAGR of 10.3% reaching 17.5 B$ in 2020 [MAM15]. Much larger growth opportunities 
are expected in network cameras (CAGR of 43% until 2021 [TEC17], [GIA15], [GAR16]) and in the 
much wider IoT market (45% CAGR until 2025 [MCK15], [IFS16]). Vision in embedded cameras 
has become strategic, and has triggered the formation of the Embedded Vision Alliance [EVA] with 
60+ companies (Fig. D3). CogniVision will leverage the above unparalleled capabilities, growth 
opportunities, and the convergence with the growing enterprise fabric in the IoT space to create 
substantial economic value in Singapore, and accelerate the Smart Nation vision [SN]. 

CogniVision will leverage synergy with local industry, with both semiconductor manufacturers 
and distributed vision system integrators, and Singaporean ministries/agencies (see letters of 
support). This will assure industrial relevance of the research outcomes, strategic positioning in the 
existing technological ecosystem, easier de-risking towards mass-production, strong alignment 
with real use cases, and true deployment in Singapore for in-field testing. 

Approach 

STATE OF THE ART AND RESEARCH LANDSCAPE 
Networks of massively distributed untethered cameras with small size and very long lifetime 

(e.g., decades) were conceptualized a decade ago [AMC06], [KGS05], [A08], assuming that the 
camera technology would be eventually feasible. Today, such capability is not yet available, due 
to the excessive power of existing silicon chips for vision, which largely exceeds the 1-mW target. 
Fig. D4 (Annex D) summarizes the available architectures of untethered cameras. 

The “raw-data” architecture #1 in Fig. D4 comprises an image sensor and a radio transmitting all 
raw video frames to the cloud. From Fig. D5a in the Annex D, conventional imagers for mobile 
platforms alone consume mWs or tens of mW [LMC16], [F15], [S15], [D13], largely exceeding the 
power target of untethered cameras. Hence, specialized ultra-low power image sensors are a 
necessity. Such imagers (see Fig. D5b in Annex D) typically achieve low power consumption at a 
severe resolution penalty (e.g., 64 x 64 pixels) [BDB14], [CLY13], [TCW13]. When fairly scaled to 
the same VGA resolution and 30 frame/s, various imagers [BDB14] can meet the above 1-mW 
power budget. Lower power is achieved by specialized imagers with multi-mode operation (Fig. 
D5c in Annex D) and limited sensemaking (see Fig. D5d) [CGM13], [KBF13], [CPC14], [CPC15], 
[CPC12], [CSK15], [CPC14], [KLF14], [CTL14]. As an example, the specialized sensor in [CGM13] 
performs in-pixel adaptive background subtraction through in-pixel low-pass filtering, and performs 
detection of rapidly changing pixels, providing a 2-bit 64x64 pixel output image at 13 frames/s and 

33-W power (although with poor resolution). Among the imagers that are capable of motion 
detection, the multi-mode sensor in [KBF13] performs motion detection with temporal averaging in 
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specific locations to detect slow object motion, while performing conventional motion detection in 
others, consuming 1.1µW at QVGA/30fps thanks to the suppression of the frame read-out when 

no motion is detected (power in normal mode is 29W). Among imagers capable of feature 
extraction, the specialized sensor in [CPC14] is triggered by motion sensing and extracts 
Histogram of Gradient features from the captured image for the detection of objects of interest, with 
power consumption of 51µW at 256x256 resolution, 15 frames/s. As example of imagers capable 
of analog-to-information conversion (AIC), [CTL14] compresses non-overlapping 4×4 pixel blocks, 
and extracts mean and gradient via a capacitor array, consuming 110µW at QVGA resolution, 30 
frames/s (mean, gradient and pixels are sent only if the gradient is large enough that it carries 
significant information). Event-driven imagers can capture faster events than all above time-driven 
sensors, but their power is at least in the order of mW when scaled at VGA resolution, due to the 
relatively large bias current [GMJ09], [LPD08], [RRL16]. The architecture #1 invariably exceeds 

the mW-power target by 50X or more, considering the wireless power of a best-in-class radio with 
5 nJ/bit [ITT16], due to the large amount of data produced in a frame (see Fig. D5a-d). Hence, the 
architecture #1 in Fig. D4 with raw frame video streaming is unsuitable for mW cameras.  

The “compressed-data” architecture #2 in Fig. D4 substantially reduces the radio power by 
compressing frames (e.g., using H.264 or HEVC encoding), which is an intensive task entailing 
hundreds of mW in commercial and most research prototypes [CBW11], [WSK08], [SNX16], down 
to mWs in an extremely efficient research prototype [SFS09]. Under common compression ratios 

of 50 and best-in-class radios with energy of 5nJ/bit, the VGA bandwidth of 2Mbps leads to a 
typical wireless power of 8-10mW, which added to the compression power exceeds the mW budget  
(see Fig. D6 in Annex D). Again, this makes the architecture #2 in Fig. D4 unsuitable as well. 

The “cognitive” architecture #3 in Fig. D4 with on-chip sensemaking is potentially viable for 
untethered cameras, as it transmits only aggregate information, making the radio power 
negligible. However, existing specialized accelerators for scene analysis consume from ten to a 
few hundred mWs [SPK16], [HBS15], [DFC15], [CLL14], [CKR16], [CDS14], [LCL15], [HPP15], 
[PBS15], [KKL14], [PCL16] (see Fig. D7). Since 2016, several research prototypes of deep learning 
acceleration were demonstrated, with power from tens to hundreds of mWs on realistic workloads 
[UAH18], [MV17], [SLL17], [DCB17], [HLM16], [MV16], [CKR16] (i.e., ImageNet classification [IMG] 
rescaled at VGA, 30frames/s). Thus, the main challenge addressed in this project is to enable 
sensemaking with power below 1 mW (see details in next section). To drastically reduce the 

power consumption due to off-chip memories (1,000X larger than on-chip memories [HZC17]), 
aggressive neural network compression techniques were recently introduced to reduce the 
memory requirement down to the MB, as available on chip [HZC17], [BWL17], [HMD16], [IHM15]. 

The additional ability to be “attentive” is achieved by the architecture #4 in Fig. D4, through the 
inclusion of an always-on on-chip radio receiver whose power needs to be significantly lower than 
the targeted mW power. Conventional wireless receivers for a range of tens of meters (e.g., 
Bluetooth) consume from several mWs to a few tens of mWs [W18], [LDB17], [BSM17], [ISS17], 
[KFC17], [LNZ17], [CLB15], [PPW15], [LKH14], [DLS10]. To reduce the receiver power, wake-up 

radios with power of several tens of Ws have been proposed to allow continuous monitoring of 
the wireless channel and detect transmission, before turning on the main receiver to complete the 
reception [SCK16], [BY15], [YJC12], [HBH12], [PGR09]. Unfortunately, most wake-up radios 
require the addition of an off-chip high-Q resonators (e.g., bulk acoustic wave, crystal), whose cost 
and off-chip connection are incompatible with the requirements of sensor nodes [SCK16]. The very 
few wake-up radios that do not require high-Q resonators [SCK16] are not suitable either, as their 
intrinsically limited capability to reject interferences would cause frequent false positive 
transmission detections, in public environments where several tens or hundreds of radios can 
overlap in the same area (e.g., smartphones, wearables, wifi at 2.4GHz). Also, proprietary solutions 
(e.g., frequency diversity [HBH12]) to ignore the transmission of other wireless devices and focus 
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only on the transmission from the cloud basestation are not feasible, as the CogniVision cameras 
need to fit existing communication standards used in commercial basestations, for obvious 
compatibility reasons. Hence, novel transceivers with average power consumption of hundreds of 

Ws (targeted: 350W) are needed to fit the mW power budget, as discussed in the next section. 

Regarding the state of the art of research-stage untethered vision systems with imaging and 
on-board intelligence (Figs. D8-D9 in Annex D), most of them consume a power from tens of mWs 
to a few hundred mWs [BCK17], [YKU17], [LZG17], [RRF17], [AXC16], [RRL16], [LLR16], [DSR15], 
[SYH14], [CBD13], [MTB13], [IBJ13], [CLB13], [CBW13], [LD13], [CVS11], [CBD11], [ANA08], 
[HPF07]. Only very few are in the mW range or lower, when fairly scaled at the same VGA 
resolution and operating in a public space with reasonably frequent events [RRL16], [LLR16], 
[KLF14], [CLB13], [CBW13]. However, most of them (with the only exception of [KLF14]) are 
actually application specific and hence cannot be used as a vision platform across different 
applications. Also, their vision computational capabilities are very limited and can deliver a 
throughput in the order of tens of MOPS or lower (MOPS=millions of operations per second), 
whereas non-trivial vision tasks at VGA resolution and 30frames/s require thousands of MFLOPS 
or more [PCL16], [SPK16], [CKR16], [SPK16], [PBS15], [HBS15] (see, e.g., examples in Table IV). 
CogniVision aims to fill the power and on-chip computation-ability gap in existing cameras, 
simultaneously targeting mW power and 20,000MOPS to cover a wide range of tasks. 

As further sign of rapidly growing interest in the area of distributed vision, several companies 
and startups have recently released their first prototypes of untethered cameras [KNT17], 
[BLK16], [HMB16], [BFL16], [NUB16], [SUC16], [CFC16], [LUC16], [FFX15], [ARL15], [PIP15], 
[ARC14]. As shown in Fig. D9, their lifetime is still very short (from hours to weeks) and inadequate 
for distributed vision, the size is in the 5-10 cm scale, and the cost is in the hundreds of dollars 
range. In large-sized companies, various industrial research&development efforts and startup 
acquisitions have recently been carried out. As mentioned above, in December 2017 Amazon 
has acquired the wireless security camera company Blink [F17] (lifetime of a few weeks); in October 
2017 Google released the CLIPS wireless camera [SL17] (lifetime of hours or days), in 2017 
Qualcomm has announced the intention to pursue the Computer Vision Module research project 
to enable low-end untethered cameras for smart toys and appliances (equivalent power of 10mW 
when fairly scaled to VGA), and is currently hiring researchers in the field [QCM17]; in March 2018, 
Sony/Nikon/Scenera/Foxconn/Wistron formed the Network of Intelligent Camera Ecosystem to 
create a new generation of smart cameras [NIC18]. Other companies that are currently 
collaborating with the team members are also starting exploring the area (not publicly disclosed), 
due to the potentially large market of distributed vision. Finally, well-known efforts on machine 
learning accelerators (e.g., Google’s TPU, IBM’s TrueNorth) target datacenter-scale applications 
and power levels that are several orders of magnitude larger, hence they are not relevant to the 
area investigated in CogniVision. A summary of current industrial interest and collaborations 
with our team in the area of distributed vision is detailed in Table IV in Annex D. 

Table II in Annex D presents the analysis of the research landscape in ultra-low power silicon 
chips for vision, leading researchers and limitations of previous work. From Table II, there is no 
available research outcome enabling mW cognitive and attentive cameras with significant 
computation-ability (e.g., tens of thousands of MOPS). The effort has indeed been fragmented into 
the optimization of individual components, and has not involved the integration of machine learning 
into a fully integrated ultra-low power imaging system on chip. CogniVision aims to fill this 
research gap. Table III summarizes related research programs funded by DARPA, NSF, EU 
and others. From this table, ubiquitous vision has recently become a very hot topic, but research 
is being focused mostly on individual algorithms (Virtual Cortex on Silicon, SAF-T, NeoVision2, 
SyNAPSE), imagers (REImagine), computer architectures (COPCAM). Research programs on 
cameras (Vision-in-Package, IcyCAM) target only wired systems, due to less ambitious power 



9 
 

targets than CogniVision. Again, this project is distinctively focused on on-chip vision system co-
design (from imager to processing) with aggressive mW power budget. 

COGNIVISION: INNOVATION FRAMEWORK (including preliminary results) 

The ambitious mW power target is pursued by introducing innovation in three dimensions 
(Fig. D11 in Annex D), corresponding to the challenges in the “Technical challenges” section.  

A. NOVEL SUB-MW DEEP LEARNING ACCELERATORS & NEURAL NETWORKS: a novel class 
of energy-efficient deep learning accelerators and innovative deep neural networks will be 
investigated, from circuit to algorithm level. The proposed class of deep learning accelerators 
enables unprecedented energy efficiency in the dominant energy of convolutions and products, 
leveraging on the drastic memory energy reduction allowed by novel compressed neural networks 
that can fit the memory available on chip (instead of being conventionally off chip). The proposed 
approach is based on the Dyadic Digital Pulse Modulation (DDPM) [C17], which provides a non-
binary representation of an integer number x consisting of a digital bitstream with a 1’s density 
proportional to x over any time interval. In DDPM, the number of pulses in a time interval w is 

proportional to the product x⋅w as in Fig. D12, with a resolution that increases with width w. Hence, 
products and weighted sums (including convolutions) can be simply computed by counting pulses. 

More quantitatively, consider 𝑁  DDPM-encoded input features in a convolutional network 𝑥𝑖 
[M12], [GBC16], which are multiplexed over time windows with different width 𝑤𝑖, and with a fixed 

total duration 𝑊 = ∑ 𝑤𝑖
𝑁
𝑖=1 , as in Figs. D12a-b. The resulting total number of pulses is proportional 

to the weighted sum 𝑦 = ∑ 𝑥𝑖𝑤𝑖
𝑁
𝑖=1 , and can be computed by a binary counter. Interestingly, the 

total computation time is independent of the number of weights 𝑁, and  the resolution in each 
product is determined by each 𝑤𝑖, while the overall accuracy of the end result can be proven to be 

constant and set by 𝑊. Hence, the computation time and energy are constant and independent of 
the number of weights 𝑁, and depend only on the targeted output resolution, which is set by the 
total duration 𝑊 (see example in Fig. D12c). This property allows for combining a large number of 
products in nearly-constant time, providing at least an order of magnitude complexity reduction 
compared to conventional multiply-and-accumulate (quadratic in the number of multiplications and 
thus kernel size, which is typically between 3 and 11 [D15b]). This also allows to achieve pre-
defined accuracy in the final result, and have a predictable accuracy-computation time tradeoff. 
Considering that DDPM modulators are very simple [C17] and the weighted sum is computed by 
simple binary counters, the proposed approach is well suited for very efficient implementations of 
large-scale deep learning accelerators based on the novel architecture in Fig. D12d. In this 
architecture, the input data is converted into 1-bit DDPM streams, and forwarded to neurons via a 
multiplexer network. Neurons are simple binary counters activated by pulses encoding the weights. 
Our preliminary post-synthesis simulations show that an energy efficiency of 50TOPS/W can be 
achieved in 28nm CMOS, which is at least 10X better than state-of-the-art accelerators whose 
accuracy has been proved to be adequate for real applications [DL18]. 

At the neural network algorithm level, innovation will be introduced both at the network 
compression and at training time. Compressed power-aware networks will be generated by 
introducing for the first time the energy cost within the training objective of the deep 
learning model. To this aim, reinforcement learning (RL) will be introduced to achieve power-aware 
model training, using circuit power models for the deep learning building blocks, and hence closing 
the training loop with circuit-level information, as opposed to conventional designs where 
circuit and network designs do not interact with each other. At training time, the novel approach of 
non-uniform precision will be introduced to leverage the fact that different weights and filters have 
different importance in terms of final deep learning model output. This fact has been extensively 
exploited in pruning [HMD16], whereas precision has been kept uniform across weights. In 
CogniVision, for the first time we introduce the notion of non-uniform precision by allocating 
higher arithmetic precision (i.e., energy) to most important weights, while scaling down the 
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precision in other weights. Our preliminary results on CIFAR-10 dataset [CFR] (Fig. D13) promise 
up to 10X circuit and energy reduction at same accuracy, compared to conventional uniform 
precision approaches. Interestingly, the non-uniform precision adjustment approach matches well 
the intrinsic capability of the DDPM architecture to assign a different precision to different weights 
during DDPM weight encoding, and makes the overhead of non-uniform precision irrelevant. The 
synergy between DDPM and non-uniform precision offers a fundamental advantage, as adopting 
multiple precisions in conventional accelerators is typically expensive [DL18]. 

The inherent redundancy of deep learning networks will be removed by developing novel "deep 
compression" techniques consisting of pruning, weight quantization (including binarization 
[C16]) and information theory-based coding. Among the novel ideas that will be investigated, 
pruning based on hard thresholding of its parameters (e.g., with small activations) will be 
explored, as shown in the example in Fig. D14a and described in the proposed approach detailed 
in Fig. D14b. Iterative hard-thresholding (based on gradients) approach to identify the task-specific 
redundant neurons and compress the deep network model by removing those neurons. The 
approach would search for the redundant neurons within the network model based on magnitude 
information about the back-propagated gradient. From our preliminary results, such deep 
compression framework can reduce a state-of-the-art deep neural network model by 1,000-2,000x, 
thus reducing the memory requirement from the GB range down to sub-MB, with negligible 
performance drop. This is a 2-4X improvement over the results demonstrated with recent and 
popular compression techniques, which can achieve 500X compression in AlexNet IHM15], 
[HMD16]. Further energy reductions will be pursued at the algorithm level by embedding novel 
techniques that make deep learning data-adaptive, allocating energy on “important” or “informative” 
regions of the frame. Accordingly, attention mechanisms for automated detection of critical parts 
of frames will be investigated. Leveraging on our current exploratory work, small deep neural 
networks with memory can be used to select regions of interest (e.g., Recurrent Neural Network 
with Long Short-Term Memory), as in Fig. D15. The model essentially learns which parts in the 
images are relevant for the task at hand, and attributes higher importance to them. According to 
our preliminary results, deep models with attention show that a bird out of 200 species can be 
recognize at the accuracy of 70% by introducing an LSTM-based attention network, which can 
focus its “attention” to a small region of only 40x40 pixel. We have also observed that the insertion 
of gating functions can further increase the image recognition accuracy by 5%. Combining 
compression and attention models, model size reductions exceeding 1,000x were observed. 

As other fundamental sub-system necessary for deep learning acceleration, a novel class of 
static RAM (SRAM) on-chip memories with non-precharged bitline will be introduced to reduce 
the bitline switching activity. Indeed, the latter is well known to be responsible for the largest power 
contribution [FKB14], [R13], due to the constant bitline precharge at the supply voltage, which 
determines a bitline transition regardless of the value stored in the accessed bitcell [R13], [WH11]. 
Instead, the novel SRAM bitcell in Fig. D16 does not require any bitline precharge since it is able 
to drive the bitline to both ground and the supply voltage. Accordingly, if the same value is being 
read in adjacent memory accesses (e.g., due to the well-known spatial correlation between 
adjacent pixels [S10]), the bitline will not change value and hence will give negligible contribution 
to the power. Preliminary circuit simulations in 28nm showed 70-80% bitline activity reduction 
compared to a conventional precharged SRAM. For a typical SRAM where the bitline accounts for 
more than 50% of the overall power [FKB14], [R13], the adoption of the proposed SRAM for the 
frame buffer is expected to lead to 40% power reduction. Interestingly, this method permits to 
reduce activity by 75% even without bit correlation across memory accesses, as pairs of random 
and uncorrelated values with 0.5 switching probability clearly lead to a bitline activity of 0.25 (i.e., 
bits in adjacent accesses assume the same value with probability of 0.75). Hence, the same 
technique allows about the same power saving even for the weight memory. 
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B. NOVEL CIRCUITS FOR IRRELEVANT ACTIVITY SKIPPING: conventional vision systems 
leverage the temporal sparsity of the frame information content to suppress processing (e.g., frame 
is not processed if it is the same as the previous one, e.g. [LZG17], [QCM17], [AXC16], [CSK15], 
[CPC14]). However, spatial redundancy is largely unexploited, as existing approaches re-compute 
the entire frame even when appreciable motion is detected in a single pixel [RRF17], [CLP17], 
[RRL16], [BLK16], [KLF14], [CBD13], wasting a vast amount of processing. In CogniVision, both 
temporal and spatial information sparsity are simultaneously exploited to skip irrelevant 
activity on selected parts of the frame that are changing, novel and salient. This will be achieved 
by introducing the scheme in Fig. D17 and novel circuit techniques in all sub-systems to inhibit their 
irrelevant activity (from imager, to feature extraction, classification and wireless communication). 

Regarding the architecture in Fig. D17, un-necessary energy-hungry tasks are stopped via 
inexpensive assessment of their relevance at the least abstract (i.e., lowest-energy) level of 
understanding. For example, computation in a given region is stopped if there is no salient content 
(e.g., tile), or if there is no feature extracted in that region, or if extracted features are not novel as 
they correspond to an object that pre-existed in the previous frame (rotated/translated/resized) (Fig. 
D17). As shown in Fig. D17, the classifier utilization and power are reduced by activating it only for 
frame regions that contain features, as well as salient and novel information content. Each level of 
abstraction generates its conventional output and an additional “relevance table” (i.e., on-chip 
small memory) identifying the tiles where relevant content is being detected (see below and Fig. 
D18), to let the next (i.e., upper in Fig. D17) sub-system skip the irrelevant frame portions. 

In regard to the irrelevant activity detection in each sub-system, the image sensor will be enriched 
with a novel in-sensor saliency detector circuit, which distinguishes tiles of pixels that change 
in intensity over time, while identifying and ignoring the background. The proposed in-sensor 
saliency detector executes the frequency-tuned saliency algorithm [AHE09] with very simple circuit 
techniques described in Fig. D19, which consists in the comparison of pixels with their long-term 
average. Such comparison highlights the important changes compared to the background or to 
objects that have remained in the frame for a long time and are hence progressively blending with 
the background. Interestingly, this approach generalizes conventional motion detection as the latter 
is simply obtained by performing no time averaging (i.e., the proposed in-sensor approach includes 
conventional motion detection as particular case). As in Fig. D19a, the proposed in-sensor saliency 
detector circuit has a fundamental difference compared to the algorithm in [AHE09], as it can 
monitor (squared) tiles of pixels instead of individual pixels, and hence permits to monitor intensity 
changes with fewer read-outs and hence lower read-out power. As an example, if a 5x5 tile is 
chosen as in Fig. D19a, the overall current generated by the corresponding photodetectors within 
the pixels is read out, instead of reading all 25 pixel currents. This reduces the number of read-
outs by 25X, and the power by the same factor, while maintaining an accuracy of 92% (Fig. D19b). 
This drastically reduces activity, compared to conventional vision systems where the 
imager invariably reads out all pixels whenever some event is occurring within the frame, and 
rigidly process all of them at a higher level of semantic understanding to identify events. 

In CogniVision, the feature extractor is based on the ORB algorithm [R11], and detects keypoints 
(i.e., low-level “point of interest”, e.g. corner, blob [S10]). As in Fig. D17, the feature extractor is 
enriched with the new capability to skip keypoint extraction in portions of the relevance table that 
are tagged as irrelevant. The keypoints in irrelevant areas are not re-computed, as the ones coming 
from the previous frame are reused. In CogniVision, we will leverage our results published in 
late 2017 [APA17] with the first ORB chip demonstration, whose power is well below 1mW for 
the first time, and 20X lower than the next best in class. Architectural evolution in CogniVision to 
further reduce power by >3X is discussed in the next section.  

Similarly, the new capability of assessing novelty of keypoints in salient portions is introduced 
in CogniVision (see Fig. D17) through a novel mechanism that is based on the fundamental 
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observation that novel keypoints are those that cannot be matched to the keypoints in the previous 
frame. In other words, novelty assessment is simplified into the well-known keypoint matching 
problem across adjacent frames (although usually matching is performed between a frame and an 
image database [S10]). A novel low-complexity approach to perform real-time inter-frame 
keypoint matching will be explored in CogniVision, leveraging the fact that ORB generates 
keypoint in strict order, where ranking is dictated by corner measure [R11], [APA17]. The proposed 
approach is based on the consideration that the ranking of keypoints across adjacent frames is 
strongly correlated, i.e. an important keypoint likely remains important in the next frame, and hence 
in the top part of the ranked keypoint list. Accordingly, matching can be performed by confining the 
comparison of keypoints with similar ranking in adjacent frame (40 out of 400 in our experiments), 
instead of exhaustively compare all possible pairs of the 400 available keypoints. From preliminary 
ORB simulations in the OpenCV environment [OCP], complexity of keypoint matching can be 
brought down by an order of magnitude, and hence close to the complexity (i.e., power) of the 
feature extractor. Similarly, the relevance table generated by novelty assessment confines the 
deep learning computation in the new frame to the activations in the output feature map of each 
layer that are affected by the novel content, whereas other activations will be retained (i.e., not re-
computed, but stored on chip) from the previous frame. For example, preliminary simulations with 
AlexNet network required 3MB for all activations, which can be stored on chip. Although its power 
benefits are not accounted for in the estimates in this proposal (due to the difficulty to have a solid 
architectural-level estimate), we expect this will add at least 2X energy efficiency improvement. 

Irrelevant activity skipping will be consistently performed at the wireless communication level as 
well (top of Fig. D17), so that the power-hungry main receiver to make CogniVision “attentive” to 
cloud’s requests is turned on only when the cloud is truly transmitting. As discussed in detail in the 
next section, this will be achieved through innovative radio-frequency techniques at the circuit 
level (operation at the 2.4GHz ISM band is targeted, for compatibility reasons with standards such 
as BlueTooth, WiFi, etc.) At circuit level, ultra-low voltage operation will be pursued through circuits 
that leverage transistor operation at the lower boundary of the near-threshold region (i.e., 0.5V 
supply instead of conventional 1.2-3V [LNZ17], [PPW15], [CLB15], [YJC12]). This drastically 
reduces the transistor gate-source voltage and hence the minimum supply voltage and power 
(essentially by the voltage reduction factor, i.e. 2.5-6X), at the cost of an order of magnitude wider 
transistors. As side benefits, the transconductance/current ratio is improved over conventional 
designs at larger voltages, and latch-up immunity is substantially improved due to the intrinsic 
inhibition of the parasitic bipolar transistor at 0.5V [YDB10]. As opposed to conventional standalone 
radios, the overall area of the CogniVision system on a chip is clearly dominated by the image 
sensor and the deep learning array, thus making the larger area of the radio acceptable. As another 
challenge posed by near-threshold operation, on-chip parasitic and noise models delivered by 
silicon foundries are no longer reliable, and proprietary modeling approaches are needed. On this, 
we will leverage the extensive modeling research work that our team members have carried out in 
the last decade [CYC15], [OYC14], [YDB10]. 

The transceiver is a single-chip solution with on-board antennas (printed on top of the flexible 
solar cell hosting the chip), operating at the 2.4GHz frequency range based on On-Off Keying 
(OOK) modulation. The OOK transmitter includes a 2.4GHz Voltage-Controlled Oscillator (VCO) 
and an OOK switch with an antenna driver stage. The receiver consists of OOK power 
decoder/detector, comparator and a driver to interface with the baseband chipset. The 
communication distance of up to a few tens of meters (targeted: 20m) with two separate compact 
antennas for Transmit (TX) and Receive (RX) will mitigate the requirement of complex TX/RX 
switch at the receiver front-end. To save power, a wakeup and a sleep mode can be selected on 
the receiver. Due to the crowded 2.4 GHz frequency band, a secure link will be established between 
the transceiver and the wireless basestation (off-the-shelf). Under non-functional state, the 
transmitter and receiver are in sleep/idle mode consuming a negligibly small dc power with the 
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driver stages in shutdown state. To wake up and initiate the secure communication, the transmitter 
can initially send a known bit sequence which will be detected at the receiver front-end and 
compared internally. Once the bit sequence is matched, the detector stage shall power up the 
driver stage and establish the communication path. Combined with the above near-threshold power 
reduction, this is expected to bring at least an order of magnitude lower power from previous 
exploration (4mW), thus reducing the receiver power to hundreds of uWs (our target is 350uWs). 

C. INNOVATIVE ENERGY-QUALITY (EQ) SCALABLE ARCHITECTURES: deep learning and 
vision algorithms are well known to be resilient against noise and inaccuracies, as exemplified 
by lower precision [D15b], [HMD16], [GAG15], and approximations [VRR14], [IHM15]. This offers 
the opportunity to deliberately degrade quality of sensing and sensemaking, and hence reduce the 
energy consumption, if the visual task at hand allows. The energy-quality scaling concept has been 
pioneered by the lead PI [A18], [A17], [A17b], [A17c], [FKB14], [A16], and provides the cloud with 
an additional (optional, but very effective) knob that can reduce the power consumption for 
tasks that are not particularly critical, or not particularly visually demanding. Such knobs are 
statically set by the cloud for a specific task and neural network, but can be occasionally changed 
by leveraging the fact that CogniVision cameras are “attentive”, and can hence be occasionally 
reconfigured. The energy-quality knob optimization is performed offline while training the 
neural network, via the same methods that are used to adjust the arithmetic precision in deep 
learning accelerators [MV17], [HMD16], [MV16]. If the user is more interested in minimizing the 
training effort, all knobs can be simply set at maximum quality and ignored. Accordingly, the values 
of the energy-quality parameters optimized while training the neural network are integral part of the 
CogniVision system configuration for a specific task, along with the weights of the neural network. 

The innovation brought in CogniVision on this dimension lies in the explicit tune-ability of 
energy-quality knobs in all sub-systems, from the image sensors to deep learning. This capability 
is not available in current vision systems, and is an additional opportunity to reduce power for a 
specific task. According to the experimental chip results recently published by our team [APA17] 
on feature extraction, 3X power reduction is achieved from energy-quality scaling alone. Similar or 
better power reductions by 4-5X are achieved in deep learning accelerators with adjustable 
precision [DL18]. Accordingly, energy-quality scaling is expected to provide substantial power 
savings. However, accurately quantifying such power savings through simulations is 
computationally extremely intensive, and its accurate exploration can be feasibly performed by 
using the CogniVision system on chip as a valuable tool to gain a better understanding of 
the energy-quality tradeoff in real-world applications. The following knobs will be considered 
in CogniVision in each sub-system in Fig. D14: 

- IMAGE SENSOR: three knobs will be considered, the tile size in Fig. D19, the threshold  for 
saliency detection in the same figure, and the analog-to-digital converter (ADC) resolution. 
Larger tiles and higher thresholds ignore more local events and save power, at the cost of lower 
saliency assessment accuracy. Similarly, lower ADC resolution saves power in the read-out 
(typically 2X for each one-bit resolution reduction [FFA14]) Among the other dimensions that 
will be explored in this sub-project, the resolution of the Analog-to-Digital Converter (ADC) for 
the readout will be adjusted via resolution-scalable architectures (see, e.g., [FFA14]). 

- FEATURE EXTRACTOR: the same energy-quality knobs that have been explored in [APA17] 
will be embedded, as they have been proved to be very effective. 

- NOVELTY ASSESSMENT: one knob will be considered, i.e. the number of bits of the keypoint 
descriptor that are used to compare and match keypoints (see previous subsection). 

- DEEP LEARNING: the adjustment of (non-uniform) precision is the main knob, as in the CIFAR-
10 example in Fig. D13. From this plot (and several others, omitted), non-uniform precision 
adjustment permits to trade off energy and quality on a very wide range, thanks to the much 
more graceful quality degradation in Fig. D13a (10X at 5% quality degradation. 
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COGNIVISION: SUBPROJECTS 

The project is structured in four sub-projects, which all converge into the final demonstration in 
sub-project #1 of the CogniVision system on chip (see in-principle architecture in Fig. D21). Sub-
projects are organized in an inter-disciplinary manner, and are centered around the interaction 
between sub-systems and levels of abstraction. 

1. System modeling, exploration, integration, demonstration of cognitive/attentive cameras 

(led by M. Alioto, joined by all) 

This sub-project addresses the system-level challenges and unifies the efforts of the other sub-
projects into a cohesive modelling, design and verification framework. Regarding the system 
modelling, a high-level simulation framework will be developed and shared among all PIs to 
evaluate the functionality, the performance and the energy efficiency of individual components, as 
well as their impact at the system level. Energy per operation will also be modelled using proprietary 
models, to preliminarily estimate the benefit of each innovative technique before performing time-
consuming circuit and architectural design. The same environment will be used to share a common 
database of benchmarks for quantitative assessment, and to perform experiments in a controlled 
environment shared by all researchers in the team. Tentatively, the environment will be in OpenCV-
Python [OCP] as a compromise between Python’s code readability (as needed in collaborative 
efforts) and availability of OpenCV libraries (which has also been used by the PIs to generate some 
preliminary results). Such environment will also be used to generate test vectors for chip testing. 

This sub-project also covers the system design, integration and demonstration aspects in 
CogniVision, once the above preliminary exploration is performed, and circuit/architectural 
techniques are investigated and developed for silicon implementation in other sub-projects. System 
integration will be first performed as a System on Board (SoB), assembling the stand-alone chips 
that are generated in the various sub-projects for two silicon rounds. The final demonstration is 
instead performed in the form of a single System on Chip (SoC). Accordingly, chip design 
partitioning and floorplan will be preliminarily performed, and a mixed-signal simulation/verification 
environment will be developed to verify the design from behavioral down to gate-level and some 
selected circuit simulations, when designs become available over time for the blocks in the 
CogniVision SoC. Also, this sub-project focuses on the silicon infrastructure for chip configuration 
and testing, based on the CogniVision chip architecture in Fig. D21. Once verified and taped out, 
the CogniVision chip will be fabricated by a commercial silicon foundry (e.g., GlobalFoundries) and 
tested in a real-world environment to assure that the ultimate quantitative targets in Table IV are 
achieved. The targeted use cases in this table are well within the capabilities of CogniVision, both 
in terms of memory (2MBs) and throughput (<20,000MOPS). The on-chip microprocessor 
(tentatively PULPino by ETHZ, also team collaborator [PLP]) in Fig. D21 does not affect the 
performance, as it is only configures the accelerators and weights into the on-chip memory. 
2. Energy-centric circuit techniques and interaction at imager-sensemaking and wireless-
sensemaking boundary (led by K. S. Yeo, joined by PI M. Alioto and collaborator S. Chen) 

In sub-project #2, the interaction of sensemaking with the image sensor on one side, and the 
wireless interface on the other side is investigated, according to Fig. D11. From the perspective of 
the irrelevant activity skipping, imager architectures with in-sensor saliency and relevance table 
generation will be explored, while systematically taking its interaction with feature extraction into 
account (Fig. D17). The image sensor will include novelty (the above in-sensor saliency detection 
circuitry), whereas the pixel and array architecture will be taken from prior designs from Prof. Yeo’s 
group [CAB08], [WHY12] to de-risk the demonstration, considering that the energy efficiency of the 
imager is not critical for the system. Also, the wireless communication circuits will be developed 
while incorporating their interaction with sensemaking, in particular with the deep network 
configuration, which is uploaded by the cloud into the on-chip memory for reconfiguration purposes. 
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In this sub-project, the image sensor and wireless transceiver are first explored from an 
architectural point of view. This is followed by two rounds of chip demonstration and testing to first 
validate the fundamental ideas and translate it into circuits, and then refine the design in 
preparation for the final System on Chip (SoC) demonstration. In the latter phase, the effort is 
focused mostly on the fine-tuning and integration with the other blocks in Fig. D21. A 
characterization of the final prototype will be performed, and correlated with silicon measurements 
in the two previous versions, evaluating the effect of process/voltage/temperature corners. 
3. Energy-centric machine learning-circuit co-design (led by J. Feng, joined by M. Alioto and 
the collaborator Prof. Luca Benini) 

This sub-project focuses on the algorithm-circuit interaction, through the investigation of a novel 
class of deep neural networks that will be designed and trained by including power consumption 
as explicit metric/cost function, as opposed to conventional machine learning methods focusing on 
pure accuracy [HVD2015]. Also, a novel class of ultra-efficient deep learning accelerators based 
on the DDPM modulation (Fig. D12) will be investigated. 

In this sub-project, we investigate systematic energy-aware model design and training 
schemes, introducing the energy cost within the training objective of the deep learning model. Being 
circuit/architecture parameters within the network optimization loop, this creates an 
interdependence and ultimately a synergy that is of particular interest for this sub-project. At the 
same time, low-activity SRAM memories will be explored and demonstrated. Machine learning 
circuit techniques will be explored that smartly allocate energy between training and 
sensemaking, adding run-time criteria for early termination of the computation, without incurring 
further unnecessary energy cost while accuracy is plateauing.  The developed energy-centric 
machine learning algorithm-circuit co-design will be validated in terms of accuracy and energy in 
applications for processing images at the resolution from 1,000x1,000 to 80x80 to assess the 
scalability of the proposed techniques. The resulting models will be validated and integrated in the 
final silicon prototype first in a controlled environment, and then in a real-world setting. Benchmarks 
provided by our project partners (see letters of support from agencies) will be used to this purpose, 
covering human and object recognition, in addition to the popular AlexNet benchmark (Table IV). 
4. Irrelevant activity skipping/EQ-scalable sensemaking circuits/architectures (led by Alioto, 
joined by all, including the collaborator D. Sylvester) 

This sub-project focuses on the circuit and architectural implications on the sensemaking of the 
three research directions in Fig. D11. Regarding the irrelevant activity skipping, the processing 
elements in Fig. D17-D21 will be organized both logically (architecture) and physically (floorplan) 
in a regular fashion that maps the imager tiles (see sub-project #2) onto the sub-systems that 
perform the corresponding computation. To this aim, novel chip design methodologies pursuing 
vertical integration from physical level to architecture will be developed in this sub-project, 
with the goal of assuring data locality (to limit the large energy cost of signal distribution) and 
maximizing the reuse of memory accesses (to limit the large energy cost of multiple accesses to 
the same memory address). In regard to the energy-quality scalability, this novel capability will be 
introduced in all components of the SoC. The fundamental vision algorithm parameters will be 
evaluated as primary candidates for being used as energy-quality knobs, and their impact on 
energy and quality will be preliminarily assessed through high-level simulations (e.g., OpenCV 
[OCP]. Also, this sub-project involves the translation of the expected research results into 
measurable chip demonstrators of saliency pre-assessment, feature extraction, novelty 
assessment, and deep learning in Fig. D17. These circuits are designed and tested in two rounds, 
respectively for initial validation and further refinement. The very final version of their design will be 
integrated in the final System on Chip (SoC) demonstration, and its characterization will be again 
cross-correlated with the silicon measurements in the two previous versions, evaluating the effect 
of process/voltage/temperature corners and in both a controlled and real-world environment. 

Program Plan 
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PROJECT MANAGEMENT STRUCTURE AND GOVERNANCE 
Massimo Alioto will be the Lead PI and will coordinate the contributions from the PIs, and the 

interaction with the industrial and agency partners. The PIs will have monthly meetings to track the 
progress of the overall program. An advisory board will be formed to provide strategic directions 
(e.g., alignment with technology and Singaporean ecosystem), independent views and valuable 
criticism to the project. The board meets once a year (or more, upon need), and consists of the 
following members: Dr. MIN Kian Boon (Deputy Director, Singapore Ministry of Home Affairs), Dr. 
Tan Khen Sang (Senior Advisor Executive, Mediatek Singapore), Ma Mun Thoh (Senior Associate 
Director, NUS Industry Liaison Office), Dr. John Gustafson (CTO of Ceranovo, previously Director 
of Intel Labs, Santa Clara), Shengmei Sheng (Panasonic), Tang Min (Huawei R&D, Singapore) 

The majority of students and staff at NUS will be in closely-tied lab space and co-supervised 
by PI and co-PIs, as facilitated by the spatial contiguity of the labs of PIs Alioto and Feng. The 
outcome of all research activities will converge on a shared simulation/exploration/design 
server environment, where updates on models, benchmarks, in-house software tools and chip 
design will be instantly available to all PIs. This will accelerate the progress beyond the coarse time 
granularity of meetings, and ensure cohesiveness. To facilitate teamwork, an internal software 
collaborative environment will be created to create a repository, a knowledge base for the entire 
team, and the medium to quickly share findings among PIs and share results over the web (e.g., 
publications, news, industrial engagement). 

As summarized in the Gantt chart in Fig. D22, the project plan is organized around six main 
activities: the project launch (phase 0), four technical sub-projects (1-4), and a project control 
structure (5). Sub-project #1 is focused on the system-level view, from modelling to final system 
silicon demonstration. Sub-projects #2-4 are focused on the interactions within the CogniVision 
system: #2 covers the imager and the transceiver, along with their interaction with sensemaking, 
#3 covers embedded machine learning algorithms and their interaction with circuits, #4 covers the 
circuits/architectures for sensemaking and their interaction with the system through activity 
skipping and EQ scalability. Their interdependence and risk mitigation are summarized below. 

0. Hiring, procurement, collaborative SW environment setup (led by M. Alioto) 

Task 0.1. Recruitment of most of manpower is initiated before the start, and completed by Y1Q2. 

Task 0.2. Procurement of essential equipment will be completed by Y1Q2. 

Task 0.3. Collaborative software environment (e.g., MS SharePoint) is setup by Y1Q2. 

1. System modeling, exploration, integration, demonstration (led by M. Alioto) 

Task 1.1. System modelling environment is developed to support the selection of most promising 

techniques from sub-projects 2-4, and their preliminary architecture/system-level assessment 

Task 1.2. 1st silicon stand-alone prototype of imager/transceiver and various sensemaking blocks 

are assembled on Printed Circuit Board (PCB) and tested for preliminary assessment of techniques 

Task 1.3. 2nd silicon stand-alone prototypes are assembled on PCB for component assessment 

Task 1.4. As preliminary work on SoC design, system is partitioned into modules, and mixed-signal 

simulation environment and verification flow are defined  

Task 1.5. CogniVision SoC is designed/verified, integrating the imager/transceiver/sensemaking 

from T2.3-2.4 (D2.3 and refinement in T2.4), 4.4 (D4.4), and algorithms from Tasks 3.1, 3.2, 3.3 

The main source of risk is posed by possible escaped design bugs that make the chip inoperable. 
This will be mitigated through testing ports to test/bypass any individual block in the SoC. 
2. Energy-centric circuit techniques and interaction at imager-sensemaking and wireless-
sensemaking boundary (led by K. S. Yeo) 
Task 2.1. Imager/transceiver architectures explored for in-sensor processing, low-power radio 
Task 2.2 Circuit-level aspects in T2.1 are investigated, 1st imager/transceiver prototype is designed 
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Task 2.3 Circuit-level issues arising in the prototype in Task 2.2 are addressed, leading to 

design/testing of a 2nd prototype for further refinement 

Task 2.4 Final revision, verification and silicon demonstration will be conducted in the CogniVision 

SoC, solving timing and signal integrity aspects arising from integration 

Some risk is in the delayed manufacturing due to delays in the foundry shuttle run, which will be 
mitigated by relying on multiple foundries, and choosing the one with more frequent shuttle runs. 
3. Energy-centric machine learning-circuit co-design (led by J. Feng) 
Task 3.1 Deep learning model compression is investigated, exploring new techniques to 
automatically locate redundancy, remove redundant connections and quantize the parameters 
Task 3.2. Energy-aware deep learning networks are investigated in terms of design and training, 
introducing novel units, skipping connections, and including energy in the training loop 
Task 3.3 Saliency front models to automatically detect informative frame regions are investigated, 
introducing gating functions to selectively pass salient regions to deep learning 
Task 3.4 The deep learning models, design and training techniques in Tasks 3.1-3.3 are 
amalgamated with circuit-level aspects in Tasks 4.1-4.4 for energy-optimal integration on chip 
Excessive accuracy drop is a possible risk, which is mitigated by explicitly managing the energy-
accuracy tradeoff, and balancing model compression, redundancy clearing and quantization. 
4. Irrelevant activity skipping/EQ-scalable sensemaking circuits/architect. (led by M. Alioto) 
Task 4.1. Circuit- and architectural-level techniques to enable activity skipping in all blocks of 
sensemaking are investigated, modeled, verified and coordinated to minimize the overall energy 
Task 4.2. Circuit- and architectural-level techniques to enable energy-quality scalability in all blocks 
of sensemaking are investigated, modeled, verified and coordinated to minimize energy 
Task 4.3 Circuit- and architectural-level aspects in all blocks for sensemaking are investigated, and 

1st silicon prototype is designed, manufactured (by silicon foundry) and tested to validate them 

Task 4.4 Circuit-level issues arising in the prototype in Task 4.3 are fixed, and further across-block 

energy optimization is performed, leading to design/testing of a 2nd prototype for further refinement 

Task 4.5 Final revision of sensemaking blocks, verification and silicon demonstration is conducted 

in the CogniVision SoC, solving issues arising from integration (e.g., timing, supply integrity) 

The main source of risk is posed by possible escaped design bugs that make the chip inoperable. 
This will be mitigated through testing ports to test/bypass any individual block in the SoC. 
5. Project control and reviews (led by Alioto) 
Task 5.1. Annual meetings are held with the Advisory board to assess the progress of the project 
Task 5.2. Mid-term review and meeting take place to assess if all models and fundamental 
components in their first silicon iteration have been successfully designed and tested 
Task 5.3. Final review and meeting take place to assess if the research, models, methodologies 
and all components have come together as SoC with sub-mW power and targeted accuracy. 

BUDGET DESCRIPTION AND JUSTIFICATION 
The main expenditures are allocated to manpower (61%) and OOE (22%). OOE mostly covers 

the cost of silicon manufacturing, due to multiple tapeouts to de-risk design before the final system 
integration. The total project value ($7.5M) above 5M$ is justified by the chip design-intensive 
nature of the project, whose credible demonstration requires integrated circuit design skills, 
substantial R&D effort, experimental validation. The manpower budget is (Total = S$3,931,920): 

 Sub-Project 1 

o 1RF (yr 1-5) contributing to system-level aspects and integration  tasks {1.1-1.6} 

o 1RF (yr 1-5) contributing to system simulation and design  tasks {1.1, 1.5, 1.6} 
o 1 lab officer (1 day/week) for equipment/computers setup, management and monitoring 

 Sub-Project 2 

o 1RF (yr 1-5) works on research on imager/transceiver circuit/architecture  tasks {2.1-2.5} 
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o 1RA (yr 1-5) contributing to imager  tasks {2.1, 2.2, 2.3, 2.4, 2.5} 

o 1RA (yr 1-5) contributing to transceiver  tasks {2.1, 2.2, 2.3, 2.4, 2.5} 

 Sub-Project 3 

o 1RF (yr 1-3) research on deep learning models and saliency  tasks {3.1-3.3} 

o 1RF (yr 3-5) research on deep learning training, benchmarking  tasks {3.3, 3.4} 

o 1RA (yr 1-3) development of deep learning models and saliency  tasks {3.1-3.3} 

o 1RA (yr 3-5) development of deep learning training, benchmarking  tasks {3.3, 3.4} 

 Sub-Project 4 

o 1RF (yr 1-5) contributing on architectural and system-level activity skipping/EQ  tasks {4.1-4.5} 

o 1RA (yr 1-5) circuit-level optimization, verification of activity skipping/EQ  tasks {4.1-4.5} 

o 1RA (yr 1-5) gate-level optimization, testing of activity skipping/EQ  tasks {4.1-4.5} 

Research Scholarships 
o 1RS (yr 1-4) on energy-autonomous integrated system modelling, design and optimization for real-

time video processing  tasks {1.2, 1.3, 1.4, 1.5, 1.6} 
o 1RS (yr 1-4) on energy-aware integrated circuit design for machine learning and real-time on-chip 

analytics  tasks {1.2, 1.3, 1.4, 1.5, 1.6} 
Budget for Equipment (Total = S$374,120.66): 

o GPU workstations/servers: deep learning network training, system simulations (Total = S$ 70 K) 
o Measurement equipment for testchip characterization (Total = S$ 209,121) comprising National 

Instruments integrated equipment for timing characterization, testing, power characterization 
o Racks and network switch for servers (Total = S$ 5 K) 
o Servers for chip design, necessary for circuit simulation/design, 5 server blades are needed for 5 

simultaneous designers (Total = S$ 75 K) 
o Workstations: 5 workstations with monitors for 5 research staff (2 RF, 3 RA) (Total = S$ 15 K) 

Other Operating Expenses (Total = S$ 1,402,500): 
o Books/ebooks and journals: Books/ebooks and journals for research purposes (Total = S$ 2.5 K) 
o Computer peripherals/accessories: computer accessories (external HD for backup, NAS, other 

peripherals for productivity, storage, etc.) are needed for ordinary needs (Total = S$ 7 K) 
o Consumables: materials&consumables, postage, photocopying for ordinary tasks, printer 

cartridges, photocopies, document exchange (Total = S$ 12.5 K) 
o License for CAD tools for chip design: CAD software tool licenses (e.g., Cadence, Synopsys, 

Mentor Graphics) for circuit design exploration, simulation, design and verification, as well as the 
integrated demonstrators. Licenses will be shared across the PIs (Total = S$ 150 K) 

o Local conferences/workshops/seminars: registration fees for scientific events (Total = S$ 5 K) 
o Maintenance fees: cost of equipment recalibration or fix (Total = 10 K) 
o Printed Circuit Board fabrication, chip packaging, miscellaneous electronics (Total = S$ 40.5 K) 
o Publication fees (Total = S$ 10 K) 
o Silicon manufacturing for chip prototyping: testchip fabrication in CMOS technology (targeted: 28 

nm). Two rounds of prototyping are needed for imager/transceiver and sensemaking (S$ 
200K/tapeout in 28mm2). Merge into final chip takes 1.5X the area of each (Total = S$ 1,100 K) 

o Visiting professors (collaborators) (Total = S$ 60 K for 3 months, salary of $20 K/month) 

o Software license, cloud services for collaborative environment (e.g., SharePoint, Total = S$5 K) 

Overseas Travel (OT, Total = S$174 K): PIs will travel to conferences and visit collaborator. 

The budget is strengthened by the additional contribution from industrial partners: Mediatek 
(S$50 K, see letter of commitment) and Panasonic (S$600 K, see letter of commitment). 

Role of team members 
The role of the PIs and their expertise are summarized below, along with the areas of the project 

that they will interact on. The Industrial interactions of team members are in Table V. 
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Prof. Massimo Alioto, lead PI, is a leader in the area of energy-efficient integrated circuit design, 
holding numerous worldwide records in the field (see group website). His Green IC research group 
tapes out 10+ chips a year (14 last year) to prove new concepts and ideas in the area of low-power 
chip design. As relevant to this project, he has pioneered energy-quality scalable integrated circuits 
(see Sept 2018 IEEE JETCAS special issue, led by him), and has worked with the two academic 
groups (UCBerkeley, University of Michigan) that first demonstrated millimeter-sized integrated 
systems with nearly-perpetual operation. He is also active in the IoT area, with 250 publications 
overall, 50 talks in the last 5 years, and the first book on chip design for IoT. Prof. Alioto is Deputy 
Editor in Chief of two IEEE journals (TVLSI, JETCAS), ISSCC TPC member, and IEEE Fellow for 
“contributions on energy-efficient circuits”. Leveraging on his expertise, Prof. Alioto will lead sub-
project #1 and #4, and join sub-projects #2 to create a well-coordinated interaction of 
sensing/wireless/sensemaking, and #3 for deep learning architecture-algorithm interaction. 

Prof. Yeo Kiat Seng, co-PI, is a widely known authority in low-power RF/mm-wave IC design, 
and on image sensors more recently. He is author of 600 publications, 7 books and holds 38 
patents. He is currently the Associate Provost for Graduate Studies at the Singapore University of 
Technology and Design, and member of Board of Advisors of the Singapore Semiconductor 
Industry Association. He was previously Head of Division of Circuits and Systems and Founding 
Director of VIRTUS of the School of Electrical and Electronic Engineering at NTU Singapore. Prof. 
Yeo holds or has held key positions in many international conferences as Advisor, General Chair, 
Co-General Chair and Technical Program Chair. He was awarded the Public Administration Medal 
(Bronze) on National Day 2009 by the President of the Republic of Singapore. Prof. Yeo is an IEEE 
Fellow. He will lead sub-project #2 on image sensors and wireless communications. 

Dr. Feng Jiashi, co-PI, has rich research experience with computer vision, machine learning 
(including deep learning). His Learning and Vision research group (20+ people) has published over 
60 papers on machine learning and computer vision in the past 5 years. Dr. Feng received the 
winner award for emotion recognition in the wild challenge 2016, best paper prize from TASK-CV 
with ICCV’2015 and best technical demo prize from ACM MM’2012. He served as the technical 
program chair for ACM ICMR’2017 and area chair for ACM MM’2017. Dr. Feng will lead sub-project 
#3 on energy-centric machine learning-circuit co-design. Dr. Feng will also collaborate with Prof. 
Alioto and Prof. Benini on the deep learningalgorithm-architecture interaction.  

The collaborator Prof. Dennis Sylvester is a prominent researcher in the field of energy-efficient 
circuits and has demonstrated the imaging system with lowest power to date. He has a stable 
collaboration with Prof. Alioto since 2011, as documented by several joint publications on ultra-low 
energy processing and sensing systems, and research staff exchange. Prof. Sylvester will 
contribute to sub-project #1 and #4 on the across-layer integration of multiple algorithms on silicon. 

The collaborator Prof. Chen Shoushun, was the Program Director of Smart Sensors, under 
VIRTUS, IC Design Centre of Excellence, NTU (Singapore). He leads a Smart Sensors group, 
aiming to investigate smart sensory systems, combining new circuit architectures and energy-
efficient signal processing algorithms. He is currently on one-year leave from NTU to lead a start-
up company developing innovative image sensors, which has been spun off from his research 
effort at NTU. His team has designed 30+ CMOS image sensors, one of which was launched in 
space in the VELOX-I nanosatellite in 2014. Prof. Chen will contribute to sub-project #1 and #2 
(and #4 to a minor extent), in particular on aspects related to imager sensors. 

The collaborator Prof. Luca Benini is Professor at ETH Zurich (Switzerland), and a worldwide 
leader in energy-efficient computer and specialized deep learning architectures. He has served as 
Chief Architect for the Platform2012/STHORM project in STmicroelectronics in 2009-2013. He has 
published more than 700 papers and 4 books. He is a Fellow of the IEEE and the ACM, and a 
member of the Academia Europaea. Prof. Benini will contribute to sub-project #1 and #3, and in 
particular on architectural aspects related to deep learning. 
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The team will collaborate with industrial partners and agencies supporting various aspects 
of the project, from in-kind contribution of 0.7M$ in terms of silicon manufacturing support, to real-
world datasets, domain expertise and hardware/cloud services for large-scale computation (see 
letters of support). Their support assures relevance to industrial interest, and alignment with the 
fast-changing landscape of distributed sensing. Industrial partners cover the key areas that the 
proposal aims to make an impact on. Mediatek is a leading company in low-energy integrated 
systems for mobile platforms and IoT. Panasonic is a well-known leader in distributed vision and 
imaging, among the other fields. The Singaporean Ministry of Home Affairs is also a key project 
partner, with strong testbedding and deployment capabilities and domain expertise. All industrial 
collaborators are physically located in Singapore. 

Outcomes & Deliverables (see Gantt chart in Fig. D22 in Annex D) 
Year 1 
M0.1 (t0+6 months). Complete recruitment, requisition of major equipment, software environment 

M2.1 (t0+1 year). Definition of imager and transceiver architecture, and modelling 

M3.1a (t0+1 year). Deep learning compression (50x smaller, <10% accuracy drop w.r.t Table IV) 

M5.1 (t0+1 year). Internal review meeting with project Advisory Board 

Year 2 
D1.1 (t0 + 2 years). Completion of system simulation/model framework and related software 

D2.2 (t0 + 2 years). Imager and transceiver (round #1) chip tape out (VGA, 30 fps) 

M3.1b (t0+2 years). Deep learning compression (200x smaller, accuracy drop <5% w.r.t. targets in 

Table IV) 

D4.3 (t0+2 years). Sensemaking chip tapeout (round #1) with <400W feature extraction, <400W 

novelty assessment, 2mW deep learning at full AlexNet activity, SRAM with 70% activity reduction 

M5.2 (t0+2 years). Internal review meeting with project Advisory Board 

Year 3 
M1.2 (t0+3 years). Completion of testing of PCB-assembled components (round #1) 

M2.2 (t0+3 years). Completion of imager characterization and demo (round #1) 

D2.3 (t0+3 years). Fine-tuned imager and transceiver (round #2) chip tape out 

D3.1 (t0+3 years). Demo on deep learning compression with >1,000x smaller size, and accuracy 

drop <2% w.r.t. targets in Table IV 

D3.2 (t0+3 years). Demo on deep learning with >10x power reduction w.r.t. state of the art 

D3.3 (t0+3 years). Demo on saliency detection with 10x less computational cost and accuracy drop 

less than 2% for targets in Table IV 

M4.1 (t0+3 years). Completion of exploration of activity skipping and architectures/circuits definition 

M4.2 (t0+3 years). Completion of exploration of activity skipping and EQ-scalable circuits 

M4.3 (t0+3 years). Demo of sensemaking chip tapeout (round #1) with 200W feature extraction, 

200W novelty assessment, <1mW deep learning at full activity, SRAM with 70% activity reduction 

D4.3 (t0+3 years). Sensemaking chip tapeout (round #2) with <150W feature extraction, <150W 

novelty assessment, <1mW deep learning at full AlexNet activity, SRAM with 70% activity reduction 

M5.3 (t0+3 years). Internal review meeting with project Advisory Board 

M5.6 (t0+3 years). Mid-term review (see quantitative targets below) 

Year 4 
M1.4 (t0+4 years). Completion of SoC partitioning, floorplan, simulation/verification environment 

M2.3 (t0+4 years). Completion of imager characterization and demo (round #1) 
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M4.4 (t0+4 years). Demo of sensemaking chip tapeout (round #2) with <150W feature extraction, 

<150W novelty assessment, <1mW deep learning at full AlexNet activity, SRAM 

M5.4 (t0+4 years). Internal review meeting with project Advisory Board 

Year 4 
D1.5 (t0+4.5 years). CogniVision final SoC chip tapeout with power targets as in Table IV 

M1.6 (t0+5 years). Final characterization and demo of CogniVision SoC chip (power as in Table IV) 

M2.4 (t0+4.5 years). Completion and tapeout of final imager/transceiver for system integration 

M2.5 (t0+5 years). Completion of characterization of sensing part of CogniVision and demo 

M3.4 (t0+5 years). Completion of in-field testing of deep learning (see Table IV) and demo on 

models with reduced size (>1,000X), <2% accuracy drop w.r.t. targets in Table IV 

M4.4 (t0+5 years). Completion of characterization of sensemaking part of CogniVision and demo 

M5.5 (t0+5 years). Internal review meeting with project Advisory Board 

M5.7 (t0+5 years). Final review (see quantitative targets below and Table IV) 

Milestones at the mid-term review (end of year 3): chip demo of feature extractor with 100 W 

power, novelty assessment engine with 100 W power, deep learning engine with <1mW power 

(see Table IV), imager with 100 W power at VGA resolution, 30 fps and activity rate of average 
NeoVision2 benchmark. Deep learning model with 1,000X reduced size with <2% accuracy 
degradation in face and object detection, compared to targets in Table IV. 

Milestones at the completion of the program: system on chip demonstration of a complete 
cognitive camera (from sensor to sensemaking) with average power consumption in the order of 1 
mW in the three use cases in Table IV (see also power targets). An international workshop will be 
held at the end of the program and co-located with a leading IEEE conference. 

IMPACT OF THE RESEARCH TO SINGAPORE 
The success of CogniVision will provide a unique technological competitive advantage, in 

view of the demonstration of the first camera chip with nearly-perpetual operation, fully untethered, 
energy-harvested, millimeter-sized, capable of on-chip real-time sensemaking, low cost ($ range). 
The on-chip sensemaking also fundamentally solves the challenges of data delouge and privacy, 
which are currently faced with distributed (tethered) cameras. Accordingly, CogniVision 
accelerates the Smart Nation vision, and contributes to make Singapore a global hub for IoT 
sensing technologies, and in particular high added-value technologies such as visual sensing.  

To reach the intended impact, local enterprises working on or using distributed sensors (e.g., 
belonging to the recently formed IoT Consortium of the Singapore Semiconductor Industry 
Association (SSIA)), will be engaged during the project via demonstration in our labs (end of year 
3). On a global scale, the Embedded Vision Alliance [EVA] will be engaged at the end of year 4 to 
reach out to leading companies in image sensing applications. These companies can indeed be 
technological or venture partners in the successive translation of CogniVision into a commercial 
technology. The support of agencies is key to the success of the project (see letter of support from 
Singapore MHA), as Singapore is a natural testbed for CogniVision, and will benefit from the 
introduction of ubiquitous vision capability in the Smart Nation vision (see alignment in Fig. D23). 
Their expertise will facilitate alignment with compelling applications and use cases. 

At the end of the project, a workshop will be organized to share findings and to demonstrate the 
outcomes of CogniVision. To make our technologies widely available, we will consider the 
opportunity of spinning off a company based in Singapore for commercialization of 
CogniVision. The CogniVision project will leverage the synergy with local industry in the IoT 
space, starting from the project industrial partners, which cover the key areas related to 
CogniVision, i.e. system integration (Panasonic) and chips for IoT (Mediatek). As key factor that 
promises significant impact of CogniVision is the relevance to a very wide range of diverse 
applications and verticals, ranging from consumer to security, smart cities, industry, and others. 


